The core of the motor domain determines the direction of myosin movement

Myosins constitute a superfamily of at least 18 known classes of molecular motors that move along actin filaments. Myosins move towards the plus end of F-actin filaments; however, it was shown recently that a certain class of myosin, class VI myosin, moves towards the opposite end of F-actin, that i...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 412; no. 6849; pp. 831 - 834
Main Authors Ikebe, Mitsuo, Homma, Kazuaki, Yoshimura, Misako, Saito, Junya, Ikebe, Reiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing 23.08.2001
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myosins constitute a superfamily of at least 18 known classes of molecular motors that move along actin filaments. Myosins move towards the plus end of F-actin filaments; however, it was shown recently that a certain class of myosin, class VI myosin, moves towards the opposite end of F-actin, that is, in the minus direction. As there is a large, unique insertion in the myosin VI head domain between the motor domain and the light-chain-binding domain (the lever arm), it was thought that this insertion alters the angle of the lever-arm switch movement, thereby changing the direction of motility. Here we determine the direction of motility of chimaeric myosins that comprise the motor domain and the lever-arm domain (containing an insert) from myosins that have movement in the opposite direction. The results show that the motor core domain, but neither the large insert nor the converter domain, determines the direction of myosin motility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0028-0836
1476-4687
DOI:10.1038/35090597