Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways
Regulator of calcineurin 1 (RCAN1), a gene identified from the critical region of Down syndrome, has been implied in pathogenesis of Alzheimer's disease (AD). RCAN1 expression was shown to be increased in AD brains; however, the mechanism of RCAN1 gene regulation is not well defined. The presen...
Saved in:
Published in | The FASEB journal Vol. 23; no. 10; pp. 3383 - 3392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Federation of American Societies for Experimental Biology
01.10.2009
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Regulator of calcineurin 1 (RCAN1), a gene identified from the critical region of Down syndrome, has been implied in pathogenesis of Alzheimer's disease (AD). RCAN1 expression was shown to be increased in AD brains; however, the mechanism of RCAN1 gene regulation is not well defined. The present study was designed to investigate the molecular mechanism of RCAN1 protein degradation. In addition to being degraded through the ubiquitin proteasome pathway, we found that lysosomal inhibition markedly increased RCAN1 protein expression in a time- and dosage-dependent manner. Inhibition of macroautophagy reduced RCAN1 expression, indicating that RCAN1 degradation is not through a macroautophagy pathway. However, disruption of chaperone-mediated autophagy (CMA) increased RCAN1 expression. Two CMA recognition motifs were indentified in RCAN1 protein to mediate its degradation through a CMA-lysosome pathway. A promoter assay further demonstrated that inhibition of RCAN1 degradation in cells reduced calcineurin-NFAT activity. Dysfunctions of ubiquitin-proteasome and autophagy-lysosome pathways have been implicated in neurodegenerative diseases. Therefore, elucidation of RCAN1 degradation by a ubiquitin proteasome pathway and CMA-lysosome pathway in the present study may greatly advance our understanding of AD pathogenesis.--Liu, H., Wang, P., Song, W., Sun, X. Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone-mediated autophagy and ubiquitin proteasome pathways. |
---|---|
ISSN: | 0892-6638 1530-6860 |
DOI: | 10.1096/fj.09-134296 |