Estimation of instantaneous peak flows from maximum mean daily flows using the HBV hydrological model

The record length and quality of instantaneous peak flows (IPFs) have a great influence on flood design, but these high resolution flow data are not always available. The primary aim of this study is to compare different strategies to derive frequency distributions of IPFs using the Hydrologiska Byr...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 30; no. 9; pp. 1431 - 1448
Main Authors Ding, J., Wallner, M., Müller, H., Haberlandt, U.
Format Journal Article
LanguageEnglish
Published Chichester Wiley 30.04.2016
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The record length and quality of instantaneous peak flows (IPFs) have a great influence on flood design, but these high resolution flow data are not always available. The primary aim of this study is to compare different strategies to derive frequency distributions of IPFs using the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrologic model. The model is operated on a daily and an hourly time step for 18 catchments in the Aller‐Leine basin, Germany. Subsequently, general extreme value (GEV) distributions are fitted to the simulated annual series of daily and hourly extreme flows. The resulting maximum mean daily flow (MDF) quantiles from daily simulations are transferred into IPF quantiles using a multiple regression model, which enables a direct comparison with the simulated hourly quantiles. As long climate records with a high temporal resolution are not available, the hourly simulations require a disaggregation of the daily rainfall. Additionally, two calibrations strategies are applied: (1) a calibration on flow statistics; (2) a calibration on hydrographs. The results show that: (1) the multiple regression model is capable of predicting IPFs with the simulated MDFs; (2) both daily simulations with post‐correction of flows and hourly simulations with pre‐processing of precipitation enable a reasonable estimation of IPFs; (3) the best results are achieved using disaggregated rainfall for hourly modelling with calibration on flow statistics; and (4) if the IPF observations are not sufficient for model calibration on flow statistics, the transfer of MDFs via multiple regressions is a good alternative for estimating IPFs.
Bibliography:http://dx.doi.org/10.1002/hyp.10725
istex:08AACC7D19BD5A20E5D61C6521D1975F0DD5AEF3
ArticleID:HYP10725
ark:/67375/WNG-1N54FKGD-W
China Scholarship Council (CSC)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.10725