Selective Hydrogenation of Fatty Nitriles to Primary Fatty Amines: Catalyst Evaluation and Optimization Starting from Octanenitrile

In this contribution, an evaluation of the potential of various homogeneous and heterogeneous catalysts for a selective hydrogenation of fatty nitriles toward primary amines is reported exemplified for the conversion of octanenitrile into octane‐1‐amine as a model reaction. When using heterogeneous...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of lipid science and technology Vol. 122; no. 1
Main Authors Hinzmann, Alessa, Gröger, Harald
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this contribution, an evaluation of the potential of various homogeneous and heterogeneous catalysts for a selective hydrogenation of fatty nitriles toward primary amines is reported exemplified for the conversion of octanenitrile into octane‐1‐amine as a model reaction. When using heterogeneous catalysts such as the ruthenium catalyst Ru/C, the palladium catalyst Pd/C, and the platinum catalyst Pt/Al2O3, low selectivities in the hydrogenation are observed, thus leading to a large portion of secondary and tertiary amine side‐products. For example, when using Ru/C as a heterogeneous catalyst, high conversions of up to 99% are obtained but the selectivity remains low with a percentage of the primary amine being at 60% at the highest. The study further reveals a high potential of homogeneous ruthenium and manganese catalysts. When also taking into account economical considerations with respect to the metal price, in particular, manganese catalysts turn out to be attractive for the desired transformation and their application in the model reaction leads to the desired primary amine product with excellent conversion, selectivity, and high yield. Practical Applications: This work describes an optimized hydrogenation process for transforming fatty nitriles to their corresponding primary amines. In general, fatty amines belong to the most applied fatty acid‐derived compounds in the chemical industry with an annual product volume exceeding 800 000 tons per year in 2011 and are widely required in the chemical industry since such compounds are either directly used in home products such as fabric softeners, dishwashing liquids, car wash detergents, or carpet cleaners or in a broad range of industrial products, for example, lubricating additives, flotation agents, dispersants, emulsifiers, corrosion inhibitors, fungicides, and bactericides, showing additional major applications, e.g., in the detergents industry. Among them primary amines play an important industrial role. However, a major concern of current processes is the lack of selectivity and the formation of secondary and tertiary amines as side‐products. By modifying a recently developed catalytic system based on manganese as economically attractive and environmentally benign metal component an efficient and selective access to fatty amines when starting from the corresponding nitriles is achieved. For example, hydrogenation of octanenitrile leads to a synthesis of octane‐1‐amine with >99% conversion and excellent selectivity with formation of secondary and tertiary amine side‐products being suppressed to an amount of <1%. The hydrogenation of octanenitrile is studied applying a range of heterogeneous and homogeneous catalysts. When using an optimized manganese catalyst, a highly efficient as well as selective synthesis of two fatty amines is achieved starting from the corresponding fatty nitriles.
ISSN:1438-7697
1438-9312
DOI:10.1002/ejlt.201900163