Key Factors in Enhancing Pseudocapacitive Properties of PANI-InOx Hybrid Thin Films Prepared by Sequential Infiltration Synthesis

Sequential infiltration synthesis (SIS) is an emerging vapor-phase synthetic route for the preparation of organic–inorganic composites. Previously, we investigated the potential of polyaniline (PANI)-InOx composite thin films prepared using SIS for application in electrochemical energy storage. In t...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 12; p. 2616
Main Authors Ham, Jiwoong, Kim, Hyeong-U, Jeon, Nari
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sequential infiltration synthesis (SIS) is an emerging vapor-phase synthetic route for the preparation of organic–inorganic composites. Previously, we investigated the potential of polyaniline (PANI)-InOx composite thin films prepared using SIS for application in electrochemical energy storage. In this study, we investigated the effects of the number of InOx SIS cycles on the chemical and electrochemical properties of PANI-InOx thin films via combined characterization using X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry. The area-specific capacitance values of PANI-InOx samples prepared with 10, 20, 50, and 100 SIS cycles were 1.1, 0.8, 1.4, and 0.96 mF/cm², respectively. Our result shows that the formation of an enlarged PANI-InOx mixed region directly exposed to the electrolyte is key to enhancing the pseudocapacitive properties of the composite films.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15122616