A Solid-State Wire-Shaped Supercapacitor Based on Nylon/Ag/Polypyrrole and Nylon/Ag/MnO2 Electrodes

In this work, a novel wire-shaped supercapacitor based on nylon yarn with a high specific capacitance and energy density was developed by designing an asymmetric configuration and integrating pseudocapacitive materials for both electrodes. The nylon/Ag/MnO2 yarn was prepared as a positive electrode...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 7; p. 1627
Main Authors Zhang, Ruirong, Wang, Xiangao, Cai, Sheng, Tao, Kai, Xu, Yanmeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 24.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a novel wire-shaped supercapacitor based on nylon yarn with a high specific capacitance and energy density was developed by designing an asymmetric configuration and integrating pseudocapacitive materials for both electrodes. The nylon/Ag/MnO2 yarn was prepared as a positive electrode by electrochemically depositing MnO2 on a silver-paste-coated nylon yarn. Additionally, PPy was prepared on nylon/Ag yarn by chemical polymerization firstly to enlarge the surface roughness of nylon/Ag, and then the PPy could be easily coated on the chemically polymerized nylon/Ag/PPy by electrochemical polymerization to obtain a nylon/Ag/PPy yarn-shaped negative electrode. The wire-shaped asymmetric supercapacitor (WASC) was fabricated by assembling the nylon/Ag/MnO2 electrode, nylon/Ag/PPy electrode and PAANa/Na2SO4 gel electrolyte. This WASC showed a wide potential window of 1.6 V and a high energy density varying from 13.9 to 4.2 μWh cm−2 with the corresponding power density changing from 290 to 2902 μW cm−2. Meanwhile, because of the high flexibility of the nylon substrate and superior adhesion of active materials, the WASC showed a good electrochemical performance stability under different bending conditions, suggesting its good flexibility. The promising performance of this novel WASC is of great potential for wearable/portable devices in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15071627