Comparison of QT Interval Measurement Methods and Correction Formulas in Atrial Fibrillation

Antiarrhythmic drugs used in atrial fibrillation (AF) cause QT prolongation and are associated with torsades de pointes, a deadly ventricular arrhythmia. No consensus exists on the optimal method of QT measurement or correction in AF. Therefore, we compared common methods to measure and correct QT i...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of cardiology Vol. 123; no. 11; pp. 1822 - 1827
Main Authors Tooley, James, Ouyang, David, Hadley, David, Turakhia, Mintu, Wang, Paul, Ashley, Euan, Froelicher, Victor, Perez, Marco
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antiarrhythmic drugs used in atrial fibrillation (AF) cause QT prolongation and are associated with torsades de pointes, a deadly ventricular arrhythmia. No consensus exists on the optimal method of QT measurement or correction in AF. Therefore, we compared common methods to measure and correct QT in AF to identify the most accurate approach. We identified patients who had electrocardiograms done at Stanford Hospital (Stanford, California) between January 2014 and October 2016 with conversion from AF to sinus rhythm (SR) within a 24-hour period. QT intervals were determined using different measurement methods and corrected using the Bazett's, Framingham, Fridericia, or Hodges formulas for heart rate (HR). Comparisons were made between QT in a patient's last instance of AF to SR. Computerized measurements were taken from 715 patients. Manual measurements were taken from a 50-patient subset. Bazett's formula produced the longest corrected QT in AF compared with other formulas (p <0.005). Measuring QT as an average over multiple beats resulted in a smaller difference between AF and SR than choosing a single beat. Determining QT from a 5-beat average resulted in a QTc that was 19.0 ms higher (interquartile range 0.30 to 43.7) in AF than SR. After correcting for residual effect of HR on QTc, there was not a significant difference between QTc in AF to SR. In conclusion, measuring QT over multiple beats produces a more accurate measurement of QT in AF. Differences between QTc in AF and SR exist because of imperfect HR correction formula and not due to an independent effect of AF.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9149
1879-1913
DOI:10.1016/j.amjcard.2019.02.057