UNIQUENESS FOR SINGULAR SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS
We prove uniqueness of positive solutions for the boundary value problems \[ \{\begin{array}{ll} -\Delta u=\lambda f(u)\ \ &\text{in}\Omega, \ \ \ \ \ u=0 &\text{on \partial \Omega, \] where Ω is a bounded domain in ℝn with smooth boundary ∂Ω, λ is a positive parameter and f:(0,∞) → (0,∞) is...
Saved in:
Published in | Glasgow mathematical journal Vol. 55; no. 2; pp. 399 - 409 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We prove uniqueness of positive solutions for the boundary value problems
\[
\{\begin{array}{ll} -\Delta u=\lambda f(u)\ \ &\text{in}\Omega, \ \ \ \ \ u=0 &\text{on \partial \Omega,
\]
where Ω is a bounded domain in ℝn with smooth boundary ∂Ω, λ is a positive parameter and f:(0,∞) → (0,∞) is sublinear at ∞ and is allowed to be singular at 0. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S001708951200064X |