UNIQUENESS FOR SINGULAR SEMILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

We prove uniqueness of positive solutions for the boundary value problems \[ \{\begin{array}{ll} -\Delta u=\lambda f(u)\ \ &\text{in}\Omega, \ \ \ \ \ u=0 &\text{on \partial \Omega, \] where Ω is a bounded domain in ℝn with smooth boundary ∂Ω, λ is a positive parameter and f:(0,∞) → (0,∞) is...

Full description

Saved in:
Bibliographic Details
Published inGlasgow mathematical journal Vol. 55; no. 2; pp. 399 - 409
Main Authors HAI, D. D., SMITH, R. C.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prove uniqueness of positive solutions for the boundary value problems \[ \{\begin{array}{ll} -\Delta u=\lambda f(u)\ \ &\text{in}\Omega, \ \ \ \ \ u=0 &\text{on \partial \Omega, \] where Ω is a bounded domain in ℝn with smooth boundary ∂Ω, λ is a positive parameter and f:(0,∞) → (0,∞) is sublinear at ∞ and is allowed to be singular at 0.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0017-0895
1469-509X
DOI:10.1017/S001708951200064X