A phase variable model of brushless dc motors based on finite element analysis and its coupling with external circuits

This paper presents a fast and accurate brushless dc motor (BLDC) phase variable model for drive system simulations. The developed model was built based on nonlinear transient finite-element analysis to obtain the inductances, back electromotive force as well as the cogging torque. The model was imp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 41; no. 5; pp. 1576 - 1579
Main Authors Mohammed, O.A., Liu, S., Liu, Z.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.05.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a fast and accurate brushless dc motor (BLDC) phase variable model for drive system simulations. The developed model was built based on nonlinear transient finite-element analysis to obtain the inductances, back electromotive force as well as the cogging torque. The model was implemented in a Simulink environment through the creation of an adjustable inductance component to account for the dependence of inductances on rotor position. Since no dq model for BLDC actually exists, the significance of this work is that it provides an accurate equivalent circuit model of BLDC motors for utilization in simulation environments. Using the developed model, the sensorless control and the torque ripple control issues were investigated and the simulation results show its practical effectiveness.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2005.845042