Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO2 Capture

The ordered mesoporous silica MCM-48 with cubic Ia3d structure was synthesized using the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) as a template agent and tetraethylorthosilicate (TEOS) as a silica source. The obtained material was first functionalized with (3-glycidyloxypropyl)t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 12; p. 10345
Main Authors Borcănescu, Silvana, Popa, Alexandru, Verdeș, Orsina, Suba, Mariana
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ordered mesoporous silica MCM-48 with cubic Ia3d structure was synthesized using the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) as a template agent and tetraethylorthosilicate (TEOS) as a silica source. The obtained material was first functionalized with (3-glycidyloxypropyl)trimethoxysilane (KH560); further, two types of amination reagents were used: ethylene diamine (N2) and diethylene triamine (N3). The modified amino-functionalized materials were characterized by powder X-ray diffraction (XRD) at low angles, infrared spectroscopy (FT-IR) and nitrogen adsorption–desorption experiments at 77 K. Characterization from a structural point of view reveals that the ordered MCM-48 mesoporous silica has a highly ordered structure and a large surface area (1466.059 m2/g) and pore volume (0.802 cm3/g). The amino-functionalized MCM-48 molecular sieves were tested for CO2 adsorption–desorption properties at different temperatures using thermal program desorption (TPD). Promising results for CO2 adsorption capacities were achieved for MCM-48 sil KH560-N3 at 30 °C. At 30 °C, the MCM-48 sil KH560-N3 sample has an adsorption capacity of 3.17 mmol CO2/g SiO2, and an efficiency of amino groups of 0.58 mmol CO2/mmolNH2. After nine adsorption–desorption cycles, the results suggest that the performance of the MCM-48 sil KH N2 and MCM-48 sil KH N3 adsorbents is relatively stable, presenting a low decrease in the adsorption capacity. The results reported in this paper for the investigated amino-functionalized molecular sieves as absorbents for CO2 can be considered as promising.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241210345