Eshelby-like forces acting on elastic structures: Theoretical and experimental proof

The Eshelbian (or configurational) force is the main concept of a celebrated theoretical framework associated with the motion of dislocations and, more in general, defects in solids. In a similar vein, in an elastic structure where a (smooth and bilateral) constraint can move and release energy, a f...

Full description

Saved in:
Bibliographic Details
Published inMechanics of materials Vol. 80; pp. 368 - 374
Main Authors Bigoni, D., Dal Corso, F., Bosi, F., Misseroni, D.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Eshelbian (or configurational) force is the main concept of a celebrated theoretical framework associated with the motion of dislocations and, more in general, defects in solids. In a similar vein, in an elastic structure where a (smooth and bilateral) constraint can move and release energy, a force driving the configuration is generated, which therefore is called by analogy ‘Eshelby-like’ or ‘configurational’. This force (generated by a specific movable constraint) is derived both via variational calculus and, independently, through an asymptotic approach. Its action on the elastic structure is counterintuitive, but is fully substantiated and experimentally measured on a model structure that has been designed, realized and tested. These findings open a totally new perspective in the mechanics of deformable mechanisms, with possible broad applications, even at the nanoscale.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-6636
1872-7743
DOI:10.1016/j.mechmat.2013.10.009