Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells
The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected...
Saved in:
Published in | Frontiers in plant science Vol. 6; p. 822 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
07.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5' AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Biotechnology, a section of the journal Frontiers in Plant Science Reviewed by: Wusirika Ramakrishna, Central University of Punjab, India; Ravshan Burikhanov, University of Kentucky, USA; Claudia Consales, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy Edited by: Domenico De Martinis, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy These authors have contributed equally to this work. |
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2015.00822 |