Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel a...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 53; no. 2; pp. 468 - 473
Main Authors Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., Bergel, A.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m −2 was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m −2 at +0.05 V versus Ag/AgCl. The power density of 23 mW m −2 was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2007.06.069