Reacquisition of New Meristematic Sites Determines the Development of a New Organ, the Cecidomyiidae Gall on Copaifera langsdorffii Desf. (Fabaceae)
The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, , hosts a bizarre "horn-shaped" leaf...
Saved in:
Published in | Frontiers in plant science Vol. 8; p. 1622 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
27.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores,
, hosts a bizarre "horn-shaped" leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues. |
---|---|
AbstractList | The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores,
, hosts a bizarre "horn-shaped" leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues. The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, Copaifera langsdorffii, hosts a bizarre "horn-shaped" leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues.The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, Copaifera langsdorffii, hosts a bizarre "horn-shaped" leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues. The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, Copaifera langsdorffii, hosts a bizarre “horn-shaped” leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues. The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, Copaifera langsdorffii , hosts a bizarre “horn-shaped” leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues. |
Author | Carneiro, Renê G. S. Isaias, Rosy M. S. Oliveira, Denis C. Moreira, Ana S. F. P. |
AuthorAffiliation | 2 Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil 4 Laboratório de Anatomia e Desenvolvimento Vegetal e Interações, Instituto de Biologia, Universidade Federal de Uberlândia , Uberlândia , Brazil 1 Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás , Goiânia , Brazil 3 Laboratório de Fisiologia Vegetal, Instituto de Biologia, Universidade Federal de Uberlândia , Uberlândia , Brazil |
AuthorAffiliation_xml | – name: 1 Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás , Goiânia , Brazil – name: 4 Laboratório de Anatomia e Desenvolvimento Vegetal e Interações, Instituto de Biologia, Universidade Federal de Uberlândia , Uberlândia , Brazil – name: 2 Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil – name: 3 Laboratório de Fisiologia Vegetal, Instituto de Biologia, Universidade Federal de Uberlândia , Uberlândia , Brazil |
Author_xml | – sequence: 1 givenname: Renê G. S. surname: Carneiro fullname: Carneiro, Renê G. S. – sequence: 2 givenname: Rosy M. S. surname: Isaias fullname: Isaias, Rosy M. S. – sequence: 3 givenname: Ana S. F. P. surname: Moreira fullname: Moreira, Ana S. F. P. – sequence: 4 givenname: Denis C. surname: Oliveira fullname: Oliveira, Denis C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29033957$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1r3DAQhk1JaT6ac2_FxxSyG31YsnUphG2TBtIG-gG9ibE02ijYliN5U_I_-oOr3U1DUqguGmnmfUaM3v1iZwgDFsUbSuacN-rEjV2aM0LrOaGSsRfFHpWymlWS_dx5Eu8WhyndkLwEIUrVr4pdpgjnStR7xe-vCOZ25ZOffBjK4Mov-Kv8jNGnCXuYvCm_-QlT-QEnjL0fcjhdYz7eYRfGHodpLYKN7CouYTje5BdovA39vfcWsDyHriszfhFG8A4jlB0My2RDdM77DEtuXh6dQQsGAd-9Ll466BIePuwHxY-zj98Xn2aXV-cXi9PLmamEmmYNEbxqaslaV7Wc0MYxi1bxhguoKKmVcwQESEcUb9tWogPSSDCSIVDpDD8oLrZcG-BGj9H3EO91AK83FyEuNcQ8gg51xXnrrOVAASoQvAFmqUApJWkay5rMer9ljau2R2vyYCJ0z6DPM4O_1stwp4VkgtQkA44eADHcrjBNuvfJYJcnhWGVNFWCCkmZ4rn07dNej03-fmsuONkWmBhSiugeSyjRa-_otXf02jt6452sEP8ojJ9g7Yn8WN_9V_cHCszK2w |
CitedBy_id | crossref_primary_10_1016_j_flora_2021_151996 crossref_primary_10_1016_j_flora_2023_152369 crossref_primary_10_1007_s00468_020_02027_1 crossref_primary_10_1590_0001_3765202120201442 crossref_primary_10_1002_ajb2_1798 crossref_primary_10_1007_s40415_020_00641_4 crossref_primary_10_1007_s42690_019_00076_9 crossref_primary_10_3389_fevo_2021_685542 crossref_primary_10_3389_fpls_2018_01139 crossref_primary_10_3390_ijms24129839 crossref_primary_10_1371_journal_pone_0205364 crossref_primary_10_1007_s10265_023_01472_6 crossref_primary_10_1016_j_flora_2025_152721 crossref_primary_10_1016_j_plantsci_2021_111114 crossref_primary_10_3389_fpls_2021_660557 crossref_primary_10_1007_s42965_021_00182_1 crossref_primary_10_1007_s10265_022_01397_6 crossref_primary_10_1080_15592324_2019_1665454 crossref_primary_10_1007_s00709_023_01849_3 crossref_primary_10_1016_j_plaphy_2018_11_032 crossref_primary_10_3390_agriculture14101761 crossref_primary_10_1016_j_bse_2021_104379 crossref_primary_10_1071_BT17099 crossref_primary_10_1038_s41598_018_38475_6 crossref_primary_10_1007_s00709_018_1321_2 |
Cites_doi | 10.1034/j.1600-0706.2001.950120.x 10.1007/978-3-642-73635-3 10.1016/j.sajb.2014.02.011 10.1007/s00442-012-2365-1 10.1073/pnas.0604722104 10.1093/pcp/pcn148 10.1016/j.jinsphys.2015.12.009 10.1007/s004420050503 10.1007/978-94-017-6230-4 10.3389/fpls.2017.01249 10.1016/j.bbagen.2015.03.007 10.9755/ejfa.v25i3.10970 10.5539/jps.v6n1p11 10.1139/b11-048 10.1016/j.sajb.2012.08.007 10.1016/j.sajb.2009.10.011 10.1016/j.jinsphys.2015.11.012 10.1016/j.baae.2005.07.001 10.1071/BT15106 10.1104/pp.36.5.589 10.1146/annurev.arplant.59.032607.092825 10.1080/17429145.2012.705339 10.1016/j.plantsci.2010.11.005 10.1111/j.1558-5646.1998.tb02248.x 10.1016/j.pbi.2010.08.012 10.1007/s13744-013-0115-7 10.1139/cjb-2015-0012 10.1007/978-94-017-8783-3 10.11646/zootaxa.3620.1.6 10.1371/journal.pone.0129331 10.1016/j.bse.2014.02.016 10.1093/jxb/erh145 10.1007/s00709-010-0128-6 10.1016/S0304-4165(89)80016-9 10.1146/annurev.en.33.010188.002343 10.1016/j.jinsphys.2015.07.006 10.1016/S0176-1617(86)80237-1 10.1093/jxb/23.1.152 10.1016/S1360-1385(97)89954-2 10.1007/s11103-006-0061-4 10.1007/s00709-013-0519-6 10.1016/B978-0-12-394380-4.50011-6 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Carneiro, Isaias, Moreira and Oliveira. 2017 Carneiro, Isaias, Moreira and Oliveira |
Copyright_xml | – notice: Copyright © 2017 Carneiro, Isaias, Moreira and Oliveira. 2017 Carneiro, Isaias, Moreira and Oliveira |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2017.01622 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_433bfdd3a1aa4a538a2d15e666088d28 PMC5625070 29033957 10_3389_fpls_2017_01622 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-805348762bf4b3018f2ded93835a41079ff0a5a6f093bbb6efa086ac62ea16fc3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:18:42 EDT 2025 Thu Aug 21 18:28:59 EDT 2025 Fri Jul 11 00:12:46 EDT 2025 Wed Feb 19 02:43:52 EST 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 00:52:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | gall shape hystochemistry photosynthesis cell redifferentiation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-805348762bf4b3018f2ded93835a41079ff0a5a6f093bbb6efa086ac62ea16fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science Edited by: Carolina Escobar, Universidad de Castilla-La Mancha, Spain Reviewed by: Fei Gao, University of Arkansas, United States; Ming Wang, University of California, Riverside, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2017.01622 |
PMID | 29033957 |
PQID | 1951561293 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_433bfdd3a1aa4a538a2d15e666088d28 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5625070 proquest_miscellaneous_1951561293 pubmed_primary_29033957 crossref_primary_10_3389_fpls_2017_01622 crossref_citationtrail_10_3389_fpls_2017_01622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-27 |
PublicationDateYYYYMMDD | 2017-09-27 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kraus (B28) 1997 Giron (B15) 2016; 84 Leopold (B30) 1961; 36 Hori (B18) 1992 Genty (B14) 1989; 990 Stone (B56) 2003; 18 Suzuki (B57) 2015; 93 Pincebourde (B48) 2016; 84 Oliveira (B42) 2016; 84 Howe (B19) 2008; 59 Moon (B39) 2011; 14 Isaias (B20) Rohfritsch (B52) 1982 Mittapalli (B37) 2007; 104 Miwa (B38) 2008; 49 Oliveira (B45) 2013; 8 Rohfritsch (B51) 1992 Meyer (B36) 1983 Vecchi (B58) 2013; 250 Shorthouse (B55) 2005; 6 Oliveira (B46) 2017; 8 Raghavan (B49) 1986 Schneider (B53) 1972; 74 Fosket (B12) 1994 Bukatsch (B3) 1972; 61 Feucht (B10) 1986; 125 Buvat (B4) 1989; 560 Scofield (B54) 2006; 60 Isaias (B23) Bragança (B2) 2017; 6 Fernandes (B9) 2014; 550 Fleury (B11) 2015; 63 Mendonça (B35) 2001; 95 Johansen (B25) 1940 Weis (B59) 1988; 33 Carneiro (B7) 2014; 92 Carneiro (B6) 2013; 3620 Haitz (B17) 1988 Kar (B26) 2013; 25 Rohfritsch (B50) 1992 Oxborough (B47) 2004; 55 Mani (B34) 1964 Bedetti (B1) 2014; 55 Karnovsky (B27) 1965; 27 Malenovsky (B33) 2015; 55 Oliveira (B41) 2010; 76 Isaias (B21) 2013; 42 Larson (B29) 1998; 115 Gahan (B13) 1984; 301 Isaias (B22) 2011; 89 Castro (B8) 2012; 83 O’Brien (B40) 1981 Haiden (B16) 2012; 170 Lev-Yadun (B31) 2003; 4 Carneiro (B5) 2015; 10 Lichtenthaler (B32) 1997; 2 Oliveira (B43) 2011; 180 Isaias (B24) 2015; 1850 Oliveira (B44) 2010; 242 20870452 - Curr Opin Plant Biol. 2011 Feb;14(1):24-30 21421396 - Plant Sci. 2011 Mar;180(3):489-95 22622876 - Oecologia. 2012 Dec;170(4):987-97 23949804 - Neotrop Entomol. 2013 Jun;42(3):230-9 17261812 - Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1889-94 28308447 - Oecologia. 1998 Jun;115(1-2):161-166 26120700 - Zootaxa. 2013;3620:129-46 25813551 - Biochim Biophys Acta. 2015 Aug;1850(8):1509-17 26620152 - J Insect Physiol. 2016 Jan;84:103-113 16655558 - Plant Physiol. 1961 Sep;36(5):589-92 18031220 - Annu Rev Plant Biol. 2008;59:41-66 15107453 - J Exp Bot. 2004 May;55(400):1195-205 26188268 - J Insect Physiol. 2016 Jan;84:137-153 26723843 - J Insect Physiol. 2016 Jan;84:70-89 18854335 - Plant Cell Physiol. 2008 Nov;49(11):1752-7 16724252 - Plant Mol Biol. 2006 Apr;60(6):V-VII 23779213 - Protoplasma. 2013 Dec;250(6):1363-8 26053863 - PLoS One. 2015 Jun 08;10(6):e0129331 20306094 - Protoplasma. 2010 Jun;242(1-4):81-93 28791033 - Front Plant Sci. 2017 Jul 24;8:1249 |
References_xml | – start-page: 51 ident: B20 article-title: “Gall morphotypes in the Neotropics and the need to standardize them,” in publication-title: Neotropical Insect Galls – start-page: 102 year: 1992 ident: B51 article-title: “Strategies in gal induction by two groups of hymenopterans,” in publication-title: Biology of Insect-Induced Galls – volume: 95 start-page: 171 year: 2001 ident: B35 article-title: Galling insect diversity patterns: the resource synchronization hypothesis. publication-title: Oikos doi: 10.1034/j.1600-0706.2001.950120.x – start-page: 60 year: 1992 ident: B50 article-title: “Patterns in gall development,” in publication-title: Biology of Insect-Induced Galls – volume: 560 year: 1989 ident: B4 publication-title: Ontogeny, Cell Differentiation, and Structure of Vascular Plants. doi: 10.1007/978-3-642-73635-3 – volume: 4 start-page: 93 year: 2003 ident: B31 article-title: Stem cells in plants are differentiated too. publication-title: Curr. Opin. Plant Biol. – volume: 92 start-page: 97 year: 2014 ident: B7 article-title: Unique histochemical gradients in a photosynthesis-deficient plant gall. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2014.02.011 – volume: 170 start-page: 987 year: 2012 ident: B16 article-title: Benefits of photosynthesis for insects in galls. publication-title: Oecologia doi: 10.1007/s00442-012-2365-1 – volume: 104 start-page: 1889 year: 2007 ident: B37 article-title: Antioxidant defense response in a galling insect. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0604722104 – volume: 49 start-page: 1752 year: 2008 ident: B38 article-title: The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn148 – volume: 84 start-page: 70 year: 2016 ident: B15 article-title: Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2015.12.009 – volume: 115 start-page: 161 year: 1998 ident: B29 article-title: The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. publication-title: Oecologia doi: 10.1007/s004420050503 – year: 1964 ident: B34 publication-title: Ecology of Plant Galls. doi: 10.1007/978-94-017-6230-4 – volume: 8 year: 2017 ident: B46 article-title: Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01249 – volume: 1850 start-page: 1509 year: 2015 ident: B24 article-title: The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2015.03.007 – volume: 25 start-page: 205 year: 2013 ident: B26 article-title: Gall-inducing stress in the leaves of Terminalia arjuna, food plant of tropical tasarsilk worm, Antheraea mylitta. publication-title: Emir. J. Food Agric. doi: 10.9755/ejfa.v25i3.10970 – volume: 27 start-page: 137 year: 1965 ident: B27 article-title: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. publication-title: J. Cell Biol. – year: 1997 ident: B28 publication-title: Manual Básico de Métodos em Morfologia Vegetal. – volume: 6 start-page: 11 year: 2017 ident: B2 article-title: Compartmentalization of metabolites and enzymatic mediation in nutritive cells of Cecidomyiidae galls on Piper arboreum Aubl. (Piperaceae). publication-title: J. Plant Stud. doi: 10.5539/jps.v6n1p11 – volume: 89 start-page: 581 year: 2011 ident: B22 article-title: Role of Euphalerus ostreoides (Hemiptera: Psylloidea) in manipulating leaflet ontogenesis of Lonchocarpus muehlbergianus (Fabaceae). publication-title: Botany doi: 10.1139/b11-048 – volume: 301 year: 1984 ident: B13 publication-title: Plant Histochemistry and Cytochemistry: An Introduction. – volume: 61 year: 1972 ident: B3 article-title: Bermerkungen zur Doppelfärbung Astrablau-Safranin. publication-title: Mikrokosmos – volume: 83 start-page: 121 year: 2012 ident: B8 article-title: Source sink relationship and photosynthesis in the hornshaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2012.08.007 – volume: 76 start-page: 239 year: 2010 ident: B41 article-title: Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2009.10.011 – year: 1994 ident: B12 publication-title: Plant Growth and Development: A Molecular Approach. – volume: 84 start-page: 103 year: 2016 ident: B42 article-title: Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2015.11.012 – volume: 6 start-page: 407 year: 2005 ident: B55 article-title: Gall-inducing insects – nature’s most sophisticated herbivores. publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2005.07.001 – volume: 63 start-page: 608 year: 2015 ident: B11 article-title: Elucidating the determination of the rosette galls induced by Pisphondylia brasiliensis Couri and Maia 1992 (Cecidomyiidae) on Guapira opposita (Nyctaginaceae). publication-title: Aust. J. Bot. doi: 10.1071/BT15106 – volume: 36 start-page: 589 year: 1961 ident: B30 article-title: Auxin–phenol complexes. publication-title: Plant Physiol. doi: 10.1104/pp.36.5.589 – start-page: 15 ident: B23 article-title: “Developmental anatomy of galls in the Neotropics: arthropods stimuli versus host plant constraints,” in publication-title: Neotropical Insect Galls – volume: 59 start-page: 41 year: 2008 ident: B19 article-title: Plant immunity to insect herbivores. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092825 – volume: 55 start-page: 513 year: 2015 ident: B33 article-title: Descriptions of two new Pseudophacopteron species (Hemiptera: Psylloidea: Phacopteronidae) inducing galls on Aspidosperma (Apocynaceae) in Brazil. publication-title: Acta Entomol. Musei Natl. Pragae – year: 1981 ident: B40 publication-title: The Study of Plant Structure: Principles and Selected Methods. – volume: 8 start-page: 225 year: 2013 ident: B45 article-title: Water stress and phenological synchronism between Copaifera langsdorffii (Fabaceae) and multiple galling insects: formation of seasonal patterns. publication-title: J. Plant Interact. doi: 10.1080/17429145.2012.705339 – volume: 180 start-page: 489 year: 2011 ident: B43 article-title: Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosyntheis?. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.11.005 – volume: 18 start-page: 512 year: 2003 ident: B56 article-title: The adaptive significance of insect gall morphology. publication-title: Trends Ecol. Evol. doi: 10.1111/j.1558-5646.1998.tb02248.x – volume: 14 start-page: 24 year: 2011 ident: B39 article-title: How a leaf gets its shape. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.08.012 – volume: 42 start-page: 230 year: 2013 ident: B21 article-title: Illustrated and annotated checklist of Brazilian gall morphotypes. publication-title: Neotrop. Entomol. doi: 10.1007/s13744-013-0115-7 – volume: 93 start-page: 435 year: 2015 ident: B57 article-title: Detection and distribution of cell growth regulators and cellulose microfibrils during the development of Lopesia sp. galls on Lonchocarpus cultratus (Fabaceae). publication-title: Botany doi: 10.1139/cjb-2015-0012 – volume: 550 year: 2014 ident: B9 publication-title: Neotropical Insect Galls. doi: 10.1007/978-94-017-8783-3 – volume: 3620 start-page: 129 year: 2013 ident: B6 article-title: Biology and systematics of gall-inducing triozids (Hemiptera: Psylloidea) associated with Psidium spp. (Myrtaceae). publication-title: Zootaxa doi: 10.11646/zootaxa.3620.1.6 – volume: 10 year: 2015 ident: B5 article-title: Could the extended phenotype extend to the cellular and subcellular levels in insect-induced galls? publication-title: PLOS ONE doi: 10.1371/journal.pone.0129331 – volume: 55 start-page: 53 year: 2014 ident: B1 article-title: The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). publication-title: Biochem. Syst. Ecol. doi: 10.1016/j.bse.2014.02.016 – year: 1986 ident: B49 publication-title: Embryogenesis in Angiosperms. A Developmental and Experimental Study. – volume: 55 start-page: 1195 year: 2004 ident: B47 article-title: Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh145 – volume: 242 start-page: 81 year: 2010 ident: B44 article-title: Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns? publication-title: Protoplasma doi: 10.1007/s00709-010-0128-6 – volume: 990 start-page: 87 year: 1989 ident: B14 article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(89)80016-9 – volume: 33 start-page: 467 year: 1988 ident: B59 article-title: Reactive plant tissue sites and the population biology of gall makers. publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.en.33.010188.002343 – volume: 84 start-page: 137 year: 2016 ident: B48 article-title: Hypoxia and hypercarbia in endophagous insects: larval position in the plant gas exchange network is key. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2015.07.006 – volume: 125 start-page: 1 year: 1986 ident: B10 article-title: Distribution of flavonols in meristematic and mature tissues of Prunus avium Shoots. publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(86)80237-1 – start-page: 157 year: 1992 ident: B18 article-title: “Insect secretion and their effect on plant growth, with special reference to hemipterans,” in publication-title: Biology of Insect-Induced Galls – volume: 74 start-page: 152 year: 1972 ident: B53 article-title: Biosynthesis and metabolism of indol-3yl-acetic acid. publication-title: J. Exp. Bot. doi: 10.1093/jxb/23.1.152 – volume: 2 start-page: 316 year: 1997 ident: B32 article-title: Fluorescence imaging as a diagnostic tool for plant stress. publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(97)89954-2 – year: 1983 ident: B36 publication-title: Anatomie des Galles. – year: 1940 ident: B25 publication-title: Plant Microtechnique. – start-page: 249 year: 1988 ident: B17 article-title: “The measurement of Rfd-values as plant vitality indices with the portable field chlorophyll fluorometer and the Pam-fluorometer,” in publication-title: Applicattion of Chorophyll Fluorescence – volume: 60 start-page: V year: 2006 ident: B54 article-title: The evolving concept of the meristem. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-006-0061-4 – volume: 250 start-page: 1363 year: 2013 ident: B58 article-title: The redifferentiation of nutritive cells in galls induced by Lepidoptera on Tibouchina pulchra (Cham.) Cogn. reveals predefined patterns of plant development. publication-title: Protoplasma doi: 10.1007/s00709-013-0519-6 – start-page: 131 year: 1982 ident: B52 article-title: “Insect galls,” in publication-title: Molecular Biology of Plant Tumors doi: 10.1016/B978-0-12-394380-4.50011-6 – reference: 26620152 - J Insect Physiol. 2016 Jan;84:103-113 – reference: 18854335 - Plant Cell Physiol. 2008 Nov;49(11):1752-7 – reference: 18031220 - Annu Rev Plant Biol. 2008;59:41-66 – reference: 21421396 - Plant Sci. 2011 Mar;180(3):489-95 – reference: 16655558 - Plant Physiol. 1961 Sep;36(5):589-92 – reference: 20870452 - Curr Opin Plant Biol. 2011 Feb;14(1):24-30 – reference: 26188268 - J Insect Physiol. 2016 Jan;84:137-153 – reference: 23779213 - Protoplasma. 2013 Dec;250(6):1363-8 – reference: 23949804 - Neotrop Entomol. 2013 Jun;42(3):230-9 – reference: 26723843 - J Insect Physiol. 2016 Jan;84:70-89 – reference: 16724252 - Plant Mol Biol. 2006 Apr;60(6):V-VII – reference: 25813551 - Biochim Biophys Acta. 2015 Aug;1850(8):1509-17 – reference: 28791033 - Front Plant Sci. 2017 Jul 24;8:1249 – reference: 20306094 - Protoplasma. 2010 Jun;242(1-4):81-93 – reference: 26120700 - Zootaxa. 2013;3620:129-46 – reference: 28308447 - Oecologia. 1998 Jun;115(1-2):161-166 – reference: 17261812 - Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1889-94 – reference: 22622876 - Oecologia. 2012 Dec;170(4):987-97 – reference: 15107453 - J Exp Bot. 2004 May;55(400):1195-205 – reference: 26053863 - PLoS One. 2015 Jun 08;10(6):e0129331 |
SSID | ssj0000500997 |
Score | 2.3015487 |
Snippet | The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1622 |
SubjectTerms | cell redifferentiation gall shape hystochemistry photosynthesis Plant Science |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojPCojcSgSWRLbcTbHdulSIZUDUKk3a_wSkbZJ6e4e-j_4wcw46WoXgbhwi2I7sTwz9jf2-BvG3kTtnJW1zAsvi1zZQuWgrcqdlBD01GoPtA959lmfnqtPF9XFVqovigkb6IGHgaP8bzZ6L6EEUIDmCcKXVUDUjfbhRbrmi2veljM1sHoT9KkHLh_0wpr38WpB7NxlPUGQI8TOMpTY-v8EMX-PlNxaeuYP2P0RM_Kjoa8P2Z3QPWJ3j3vEdTf77OcXnNV-rNsh-Ir3kePExc8SBfNAyMq_Iq5c8g9j5As-IurjW-FC1AhSs3Q1810qnwXX-v7ypm09BP4RFguOn5-hk03RMMBpp3Pp--sY2xY_towTfjgHCy5AePuYnc9Pvs1O8zHXQu5U1axwoaqkopnRRmXR6KdR-OAb9F8rUOgiNjEWUIGORSOttTpEQGcInBYBSh2dfML2ur4LzxjH8hJcdEoFqbSdNjaIAojIzsnoQpOxye3QGzcSkVM-jIVBh4RkZUhWhmRlkqwydrhpcDVwcPy96jHJclONyLPTC1QpM6qU-ZdKZez1rSYYNDY6QYEu9OulKRGPUjrRRmbs6aAZm1-JppB06JmxekdndvqyW9K13xOhNzmhOPU-_x-df8Hu0XBQSIuoX7K91fU6vELctLIHyUR-AV8BGMw priority: 102 providerName: Directory of Open Access Journals |
Title | Reacquisition of New Meristematic Sites Determines the Development of a New Organ, the Cecidomyiidae Gall on Copaifera langsdorffii Desf. (Fabaceae) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29033957 https://www.proquest.com/docview/1951561293 https://pubmed.ncbi.nlm.nih.gov/PMC5625070 https://doaj.org/article/433bfdd3a1aa4a538a2d15e666088d28 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9NADB6hhQMXxJvwWA0Sh0UiJclMkuaAEFvorpDKAajUW-R5QaSQ7DatRP8HPxh7kpYtKhcuUZSJ02rssT9PnM-MvXCZ1krkIoyMiEKpIhlCpmSohQCbjVVmgPYhZ5-y87n8uEgXf9oBDRPYHUztqJ_UfFmPfl5u3uKCf0MZJ8bb1-6iJuLtOB8hfknQH1_HsJRTO4PZgPV7om9CQ3lP73NIjniBi0jQi6u9IOW5_A8B0L_rKK8EpultdmtAlPxdbwJ32DXb3GU3TltEfZt77Ndn9HmX66ovzeKt4-jW-MwTNPd0rfwLos6Ovx_qYvAUMSG_UkxEQuDF_Iebr_z4xOrKtD82VWXA8jOoa46Pn2AKTrUywGkftDPt0rmqwod1bsRPpqBAW7Av77P59MPXyXk4dGIItUyLFYaxVEjym8pJhS5h7BJjTYHZbQoSE8jCuQhSyFxUCKVUZh1gqgQ6SyzEmdPiATtq2sY-YhzHY9BOS2mFzNS4UDaJgGjutHDaFgEbbae-1ANNOXXLqEtMV0htJamtJLWVXm0BO9kJXPQMHf--9ZR0ubuNqLX9hXb5rRxWaimFUM4YATGABIwHkJg4tZjmoUM2yThgz7eWUOJSpPcr0Nh23ZUxolVqNlqIgD3sLWP3U1vLCli-ZzN7_2V_pKm-e7pvSlHRMT_-b8kn7CbNAVW5JPlTdrRaru0zhFIrdey3IPB4toiP_XL5DQ5cIr0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reacquisition+of+New+Meristematic+Sites+Determines+the+Development+of+a+New+Organ%2C+the+Cecidomyiidae+Gall+on+Copaifera+langsdorffii+Desf.+%28Fabaceae%29&rft.jtitle=Frontiers+in+plant+science&rft.au=Carneiro%2C+Ren%C3%AA+G.+S.&rft.au=Isaias%2C+Rosy+M.+S.&rft.au=Moreira%2C+Ana+S.+F.+P.&rft.au=Oliveira%2C+Denis+C.&rft.date=2017-09-27&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=8&rft_id=info:doi/10.3389%2Ffpls.2017.01622&rft_id=info%3Apmid%2F29033957&rft.externalDocID=PMC5625070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |