Reacquisition of New Meristematic Sites Determines the Development of a New Organ, the Cecidomyiidae Gall on Copaifera langsdorffii Desf. (Fabaceae)

The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, , hosts a bizarre "horn-shaped" leaf...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 8; p. 1622
Main Authors Carneiro, Renê G. S., Isaias, Rosy M. S., Moreira, Ana S. F. P., Oliveira, Denis C.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 27.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of gall shapes has been attributed to the feeding behavior of the galling insects and how the host tissues react to galling stimuli, which ultimately culminate in a variable set of structural responses. A superhost of galling herbivores, , hosts a bizarre "horn-shaped" leaflet gall morphotype induced by an unidentified species of Diptera: Cecidomyiidae. By studying the development of this gall morphotype under the anatomical and physiological perspectives, we demonstrate the symptoms of the Cecidomyiidae manipulation over plant tissues, toward the cell redifferentiation and tissue neoformation. The most prominent feature of this gall is the shifting in shape from growth and development phase toward maturation, which imply in metabolites accumulation detected by histochemical tests in meristem-like group of cells within gall structure. We hypothesize that the development of complex galls, such as the horn-shaped demands the reacquisition of cell meristematic competence. Also, as mature galls are green, their photosynthetic activity should be sufficient for their oxygenation, thus compensating the low gas diffusion through the compacted gall parenchyma. We currently conclude that the galling Cecidomyiidae triggers the establishment of new sites of meristematic tissues, which are ultimately responsible for shifting from the young conical to the mature horn-shaped gall morphotype. Accordingly, the conservative photosynthesis activity in gall site maintains tissue homeostasis by avoiding hypoxia and hipercarbia in the highly compacted gall tissues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science
Edited by: Carolina Escobar, Universidad de Castilla-La Mancha, Spain
Reviewed by: Fei Gao, University of Arkansas, United States; Ming Wang, University of California, Riverside, United States
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2017.01622