On the throughput enhancement of the downstream channel in cellular radio networks through multihop relaying

In this paper, we study the effect of multihop relaying on the throughput of the downstream channel in cellular networks. In particular, we compare the throughput of the multihop system with that of the conventional cellular system, demonstrating the achievable throughput improvement by the multihop...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 22; no. 7; pp. 1206 - 1219
Main Authors Jaeweon Cho, Haas, Z.J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study the effect of multihop relaying on the throughput of the downstream channel in cellular networks. In particular, we compare the throughput of the multihop system with that of the conventional cellular system, demonstrating the achievable throughput improvement by the multihop relaying. We also propose a hybrid control strategy for the multihop relaying, in which we advocate the use of both, the direct transmission and the multihop relaying. Our study shows that most of the throughput gain can be obtained with the use of a two- and three-hop relaying scheme. Substantial throughput improvement could be additionally obtained by operating the concurrent relaying transmission in conjunction with the nonconcurrent transmission. We also argue here that the multihop relaying technology can be utilized for mitigating unfairness in quality-of-service (QoS), which comes about due to the location-dependent signal quality. Our results show that the multihop system can provide more even QoS over the cell area. The multihop cellular network architecture can also be utilized as a self-configuring network mechanism that efficiently accommodates variability of traffic distribution. We have studied the throughput improvement for the uniform, as well as for the nonuniform traffic distribution, and we conclude that the use of multihop relaying in cellular networks would be relatively robust to changes in the actual traffic distribution.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2004.829340