Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as -methyladenosine (m A) and 5-methylcytidine (m C) is the most prevalent mRNA modifications found in eukaryotes...
Saved in:
Published in | Frontiers in plant science Vol. 10; p. 500 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as
-methyladenosine (m
A) and 5-methylcytidine (m
C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses. |
---|---|
AbstractList | Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as
N
6
-methyladenosine (m
6
A) and 5-methylcytidine (m
5
C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as “writers (methyltransferase),” “readers (RNA-binding protein),” and “erasers (demethylase),” respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses. Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as “writers (methyltransferase),” “readers (RNA-binding protein),” and “erasers (demethylase),” respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses. Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N 6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N 6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses. Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as -methyladenosine (m A) and 5-methylcytidine (m C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses. |
Author | Manduzio, Stefano Hu, Jianzhong Kang, Hunseung |
AuthorAffiliation | Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea |
AuthorAffiliation_xml | – name: Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea |
Author_xml | – sequence: 1 givenname: Jianzhong surname: Hu fullname: Hu, Jianzhong – sequence: 2 givenname: Stefano surname: Manduzio fullname: Manduzio, Stefano – sequence: 3 givenname: Hunseung surname: Kang fullname: Kang, Hunseung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31110512$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa2KqlDKubcqx1528Ti2E18qrShtkeiHoJV6sxxnAkZOHGwvEv99vbsUQaWePPK892bs32uyN4UJCXkLdFnXrToeZp-WjIJaUioofUEOQEq-4JL93ntS75OjlG4o3YqUal6R_RoAqAB2QC5PZ5ejmZKNbs5hdLa6-LaqvmK-vvcmuzBVbqp-eDPl6iPeoQ_ziKU2U1-tOhdyMVzmiClVF5jmMCVMb8jLwfiERw_nIfn16fTnyZfF-ffPZyer84XlQuVFA6ppGgMGlBGsh06woeaDkbIHakUjur5BJXrZUZS8a9vOUmtqgxaVFJzXh-Rsl9sHc6Pn6EYT73UwTm8vQrzSJpYFPWoQjBpr7WCx54Jj1w4KZIeDAbAgm5L1YZc1r7sRe1veGI1_Fvq8M7lrfRXutORKMahLwPuHgBhu15iyHl2y6MvPYVgnzVjNaCvqRhTpu6ezHof8pVIExzuBjSGliMOjBKjeoNcb9HqDXm-pFof4x2Fd3uIryzr_X98fQCW1DA |
CitedBy_id | crossref_primary_10_3390_ijms23158299 crossref_primary_10_3390_plants13070982 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_1080_10495398_2022_2065999 crossref_primary_10_1093_plcell_koad103 crossref_primary_10_1186_s12870_024_05114_4 crossref_primary_10_1186_s12870_024_05425_6 crossref_primary_10_1016_j_envexpbot_2022_104945 crossref_primary_10_1111_tpj_15872 crossref_primary_10_1111_pbi_13223 crossref_primary_10_3389_fpls_2023_1167789 crossref_primary_10_1111_tpj_15951 crossref_primary_10_3389_fpls_2023_1132959 crossref_primary_10_3389_fpls_2024_1521758 crossref_primary_10_1111_pbi_13829 crossref_primary_10_3390_horticulturae9091051 crossref_primary_10_3390_plants12142747 crossref_primary_10_3389_fcell_2021_628415 crossref_primary_10_3390_cimb45010009 crossref_primary_10_1186_s12870_024_04813_2 crossref_primary_10_1016_j_tifs_2023_104134 crossref_primary_10_1093_hr_uhad284 crossref_primary_10_3389_fcell_2021_651278 crossref_primary_10_1016_j_plaphy_2022_12_001 crossref_primary_10_1016_j_micres_2024_127710 crossref_primary_10_1016_j_lfs_2023_122372 crossref_primary_10_3390_genes12081121 crossref_primary_10_7717_peerj_12719 crossref_primary_10_1111_tpj_15270 crossref_primary_10_1007_s12298_022_01260_x crossref_primary_10_1371_journal_pone_0289068 crossref_primary_10_1016_j_csbj_2023_01_012 crossref_primary_10_3390_ijms23042091 crossref_primary_10_1093_plcell_koac346 crossref_primary_10_1016_j_ijbiomac_2022_08_182 crossref_primary_10_1111_jipb_13009 crossref_primary_10_1186_s12870_025_06134_4 crossref_primary_10_3389_fpls_2022_832177 crossref_primary_10_3390_ijms252211912 crossref_primary_10_1093_bfgp_elaa021 crossref_primary_10_1111_pbi_13913 crossref_primary_10_1111_pce_14447 crossref_primary_10_3390_plants9101308 crossref_primary_10_3390_ijms21186707 crossref_primary_10_1016_j_jbc_2022_101671 crossref_primary_10_1007_s00425_024_04491_2 crossref_primary_10_1128_msphere_00552_23 crossref_primary_10_1016_j_plaphy_2022_09_029 crossref_primary_10_3389_fpls_2021_687826 crossref_primary_10_1016_j_pbi_2022_102287 crossref_primary_10_1080_15476286_2021_1909321 crossref_primary_10_1186_s12284_021_00502_y crossref_primary_10_1111_brv_12661 crossref_primary_10_1016_j_plaphy_2023_108255 crossref_primary_10_3390_ijms222312912 crossref_primary_10_3389_fpls_2022_939843 crossref_primary_10_3390_plants11081033 crossref_primary_10_1094_PHYTO_12_23_0474_R crossref_primary_10_3389_fpls_2021_702303 crossref_primary_10_1016_j_plaphy_2022_04_031 crossref_primary_10_1093_jxb_erae171 crossref_primary_10_3389_fpls_2020_00181 crossref_primary_10_3390_ijms21207508 crossref_primary_10_1080_07388551_2020_1751059 crossref_primary_10_1007_s12374_022_09351_8 crossref_primary_10_1515_oncologie_2023_0440 crossref_primary_10_3389_fpls_2023_1153840 crossref_primary_10_3390_genes12081106 crossref_primary_10_1016_j_xplc_2024_101064 crossref_primary_10_1094_MPMI_35_2 crossref_primary_10_1002_iub_2276 crossref_primary_10_1016_j_jia_2025_01_001 crossref_primary_10_1016_j_envexpbot_2023_105306 crossref_primary_10_3390_ijms21124548 crossref_primary_10_1111_tpj_16274 crossref_primary_10_3390_ijms222111387 crossref_primary_10_1016_j_bbrep_2024_101677 crossref_primary_10_3389_fpls_2019_01220 crossref_primary_10_1094_MPMI_09_21_0221_CR crossref_primary_10_1016_j_gpb_2023_02_003 crossref_primary_10_3389_fpls_2022_1064131 crossref_primary_10_1016_j_ijbiomac_2023_127769 crossref_primary_10_3390_horticulturae8050462 crossref_primary_10_1007_s12374_020_09261_7 crossref_primary_10_1093_jxb_erac461 crossref_primary_10_1002_wrna_1639 crossref_primary_10_1007_s00299_023_03046_1 crossref_primary_10_1093_pcp_pcab060 crossref_primary_10_1016_j_ncrops_2024_100044 crossref_primary_10_1093_hr_uhad174 crossref_primary_10_3390_ijms24065713 crossref_primary_10_1016_j_ygeno_2022_110542 crossref_primary_10_1093_plphys_kiab509 crossref_primary_10_1111_ppl_13505 crossref_primary_10_1007_s00497_021_00428_x |
Cites_doi | 10.1371/journal.pone.0030588 10.1038/nchembio.1654 10.1016/j.gpb.2018.04.002 10.7554/eLife.18434 10.1038/cr.2017.99 10.1146/annurev-cellbio-100616-060758 10.1111/nph.14586 10.1016/j.molcel.2016.03.021 10.1038/nature21671 10.1016/j.molcel.2016.01.012 10.1073/pnas.1717794115 10.1016/j.cell.2015.10.012 10.1105/tpc.17.00854 10.1038/cddis.2017.122 10.1105/tpc.108.058883 10.1016/j.cell.2015.08.011 10.1093/nar/gkq1028 10.1016/j.stem.2015.01.016 10.1002/1873-3468.13092 10.1016/j.molp.2017.09.013 10.1016/j.ccell.2017.02.013 10.1038/nature21022 10.3389/fpls.2018.00519 10.1038/nature17640 10.1111/jnc.14481 10.1038/cr.2014.3 10.1038/nature18298 10.1073/pnas.1720945115 10.1186/gb-2012-13-10-175 10.1126/scisignal.aab3357 10.1073/pnas.1602883113 10.1016/j.tibs.2015.07.008 10.1038/nature20577 10.1016/j.cub.2006.04.027 10.1093/genetics/157.2.679 10.1101/gad.262766.115 10.1016/j.molcel.2012.10.015 10.3390/biom7010020 10.1038/nature16998 10.1101/gad.309146 10.1016/j.cell.2013.10.026 10.1016/j.stemcr.2016.11.014 10.1038/nsmb.3162 10.1016/j.cell.2013.10.028 10.1038/nature12730 10.1016/j.dnarep.2016.05.026 10.1080/15476286.2016.1259781 10.1073/pnas.1703139114 10.1074/jbc.M803776200 10.1038/nature15377 10.1186/s13045-018-0590-8 10.1093/nar/gkn954 10.1038/cr.2017.15 10.1038/nature11112 10.1002/stem.1228 10.1038/nsmb.3148 10.1074/jbc.R115.656462 10.1002/wrna.1489 10.1093/nar/gkx354 10.1093/nar/gkx1030 10.1038/nsmb.3462 10.1073/pnas.1809838115 10.1038/nchembio.687 10.1074/jbc.M111.286187 10.1038/s41419-017-0129-x 10.1105/tpc.17.00833 10.1105/tpc.16.00751 10.1002/wrna.1144 10.1093/nar/gkv234 10.1016/j.celrep.2014.05.048 10.1126/science.aad8711 10.1016/j.cell.2015.05.014 10.1210/jc.2014-1893 10.1093/nar/gks144 10.1093/jmcb/mjv029 10.1038/ncomms6630 10.1073/pnas.0911635107 10.4161/rna.36281 10.1016/j.ccell.2016.11.017 10.3390/biom7010029 10.1038/s41556-018-0045-z 10.1038/s41421-018-0019-0 10.1105/tpc.16.00912 10.1016/j.bbrc.2017.10.158 10.1016/j.sbi.2017.05.011 10.7554/eLife.30919 10.1038/cr.2014.151 10.1093/nar/gkx778 10.3389/fpls.2012.00048 10.1038/nrm3785 10.1038/srep42271 10.1038/nature20568 10.1016/j.molcel.2017.11.002 10.1038/ncomms12626 10.1016/j.sbi.2015.01.002 10.1016/j.devcel.2016.06.008 10.1128/mcb.12.3.1078 10.1073/pnas.1412742111 10.1126/science.1261417 10.1105/tpc.17.00934 10.1038/nature24456 10.1093/jxb/erj098 10.1007/s11105-014-0724-2 10.1021/jacs.7b09213 10.1007/s13258-016-0507-2 10.1128/MCB.01523-12 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Hu, Manduzio and Kang. 2019 Hu, Manduzio and Kang |
Copyright_xml | – notice: Copyright © 2019 Hu, Manduzio and Kang. 2019 Hu, Manduzio and Kang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.00500 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_1520acccfced454eb8f916befa11c167 PMC6499213 31110512 10_3389_fpls_2019_00500 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-719777a1a19a52d1b52f34fa66d10c575bd7e95d6b0e64b88bc0ca3aece965443 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:32:41 EDT 2025 Thu Aug 21 14:08:45 EDT 2025 Fri Jul 11 09:42:00 EDT 2025 Thu Jan 02 22:59:50 EST 2025 Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 02:06:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RNA modification epitranscriptome RNA methylation RNA metabolism abiotic stress |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-719777a1a19a52d1b52f34fa66d10c575bd7e95d6b0e64b88bc0ca3aece965443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Andreas Bachmair, University of Vienna, Austria; Byungho-Ho Kang, The Chinese University of Hong Kong, China These authors have contributed equally to this work Edited by: Sang Yeol Lee, Gyeongsang National University, South Korea This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00500 |
PMID | 31110512 |
PQID | 2232085375 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1520acccfced454eb8f916befa11c167 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6499213 proquest_miscellaneous_2232085375 pubmed_primary_31110512 crossref_primary_10_3389_fpls_2019_00500 crossref_citationtrail_10_3389_fpls_2019_00500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-17 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Jia (B36) 2011; 7 Mielecki (B56) 2012; 7 Dominissini (B16) 2012; 485 Zhao (B103) 2014; 24 David (B15) 2017; 29 Kawarada (B37) 2017; 45 Fustin (B24) 2013; 155 Bodi (B7) 2012; 3 Meyer (B53) 2014; 15 Chen (B9) 2015; 16 Flores (B22) 2017; 8 Dai (B14) 2018; 9 Gilbert (B27) 2016; 352 Wu (B94) 2017; 47 Tang (B83) 2018; 115 Widagdo (B93) 2018; 147 Luo (B46) 2014; 5 Mauer (B50) 2018; 592 Jackman (B34) 2013; 4 Haussmann (B30) 2016; 540 Zheng (B104) 2013; 49 Sloan (B80) 2017; 14 Arguello (B3) 2017; 139 Fedeles (B21) 2015; 290 Sledz (B79) 2016; 5 Bartosovic (B5) 2017; 45 Cui (B13) 2017; 10 Li (B42) 2017; 31 Hsu (B31) 2017; 27 Alemu (B2) 2016; 44 Cantara (B8) 2010; 39 Lin (B44) 2016; 62 Pan (B64) 2018; 11 Park (B65) 2017; 39 Schwartz (B72) 2014; 8 Zhang (B101) 2016; 113 Saletore (B70) 2012; 13 Yue (B100) 2015; 29 Růžička (B68) 2017; 215 Luo (B47) 2014; 111 Li (B41); 11 Meyer (B55) 2015; 163 Wang (B90); 161 Wang (B88) 2017; 8 Choi (B10) 2016; 23 Shi (B78) 2017; 27 Zhang (B102) 2017; 31 Väre (B85) 2017; 7 Wei (B91) 2018; 30 Li (B40); 32 Zhou (B106) 2015; 526 Müller (B57) 2018; 495 Safra (B69) 2017; 551 Liao (B43) 2018; 16 Schaefer (B71) 2009; 37 Song (B81) 2018; 9 Wang (B87) 2016; 534 Xiao (B97) 2016; 61 Arribas-Hernández (B4) 2018; 30 Shah (B74) 1992; 12 Squires (B82) 2012; 40 Chou (B11) 2017; 68 Ougland (B62) 2012; 30 Jain (B35) 2018; 7 Scutenaire (B73) 2018; 30 Boccaletto (B6) 2018; 46 Nelson (B58) 2010; 107 Zhong (B105) 2008; 20 Nicastro (B59) 2015; 30 Wang (B89) 2014; 505 Hastings (B29) 2013; 155 Meyer (B54) 2017; 33 Du (B18) 2016; 7 Alarcon (B1) 2015; 162 Niessen (B60) 2001; 157 Duan (B19) 2017; 29 Pastore (B66) 2012; 287 Yue (B99) 2018; 4 Dominissini (B17) 2016; 530 Sharma (B75) 2015; 40 Shen (B76) 2014; 100 Merret (B52) 2015; 43 Frye (B23) 2006; 16 Ma (B48) 2006; 57 Ougland (B63) 2015; 7 Oerum (B61) 2017; 7 Knuckles (B38) 2018; 32 Hussain (B33) 2013; 33 Westbye (B92) 2008; 283 Martínez-Pérez (B49) 2017; 114 Mauer (B51) 2017; 541 Fustin (B25) 2018; 115 Liu (B45) 2016; 23 Guo (B28) 2018; 115 Wu (B95) 2016; 532 Geula (B26) 2015; 347 Wang (B86); 8 Xiang (B96) 2017; 543 Lence (B39) 2016; 540 Shen (B77) 2016; 38 Ueda (B84) 2017; 7 Edupuganti (B20) 2017; 24 Covelo-Molares (B12) 2018; 9 Huang (B32) 2018; 20 Ping (B67) 2014; 24 Xu (B98) 2014; 10 |
References_xml | – volume: 7 year: 2012 ident: B56 article-title: Novel AlkB dioxygenases- alternative models for in silico and in vivo studies. publication-title: PLoS One doi: 10.1371/journal.pone.0030588 – volume: 10 start-page: 927 year: 2014 ident: B98 article-title: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1654 – volume: 16 start-page: 99 year: 2018 ident: B43 article-title: YTH domain: a family of N6-methyladenosine (m6A) readers. publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2018.04.002 – volume: 5 year: 2016 ident: B79 article-title: Structural insights into the molecular mechanism of the m6A writer complex. publication-title: eLife doi: 10.7554/eLife.18434 – volume: 27 start-page: 1115 year: 2017 ident: B31 article-title: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. publication-title: Cell Res. doi: 10.1038/cr.2017.99 – volume: 33 start-page: 319 year: 2017 ident: B54 article-title: Rethinking m6A readers, writers and erasers. publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060758 – volume: 215 start-page: 157 year: 2017 ident: B68 article-title: Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. publication-title: New Phytol. doi: 10.1111/nph.14586 – volume: 62 start-page: 335 year: 2016 ident: B44 article-title: The m6A methyltransferase METTL3 promotes translation in human cancer cells. publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.03.021 – volume: 543 start-page: 573 year: 2017 ident: B96 article-title: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. publication-title: Nature doi: 10.1038/nature21671 – volume: 61 start-page: 507 year: 2016 ident: B97 article-title: Nuclear m6A reader YTHDC1 regulates mRNA splicing. publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.012 – volume: 115 start-page: E325 year: 2018 ident: B83 article-title: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1717794115 – volume: 163 start-page: 999 year: 2015 ident: B55 article-title: 5′ UTR m6A promotes cap-independent translation. publication-title: Cell doi: 10.1016/j.cell.2015.10.012 – volume: 30 start-page: 986 year: 2018 ident: B73 article-title: The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.17.00854 – volume: 8 year: 2017 ident: B88 article-title: FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis. publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.122 – volume: 20 start-page: 1278 year: 2008 ident: B105 article-title: MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. publication-title: Plant Cell doi: 10.1105/tpc.108.058883 – volume: 162 start-page: 1299 year: 2015 ident: B1 article-title: HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. publication-title: Cell doi: 10.1016/j.cell.2015.08.011 – volume: 39 start-page: D195 year: 2010 ident: B8 article-title: The RNA modification database RNAMDB: 2011 update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1028 – volume: 16 start-page: 289 year: 2015 ident: B9 article-title: m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.016 – volume: 592 start-page: 2012 year: 2018 ident: B50 article-title: FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications. publication-title: FEBS Lett. doi: 10.1002/1873-3468.13092 – volume: 10 start-page: 1387 year: 2017 ident: B13 article-title: 5-Methylcytosine RNA methylation in Arabidopsis thaliana. publication-title: Mol. Plant doi: 10.1016/j.molp.2017.09.013 – volume: 31 start-page: 591 year: 2017 ident: B102 article-title: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.013 – volume: 541 start-page: 371 year: 2017 ident: B51 article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability. publication-title: Nature doi: 10.1038/nature21022 – volume: 9 year: 2018 ident: B81 article-title: Transcriptome-wide annotation of m5C RNA modifications using machine learning. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00519 – volume: 532 start-page: 329 year: 2016 ident: B95 article-title: DNA methylation on N6-adenine in mammalian embryonic stem cells. publication-title: Nature doi: 10.1038/nature17640 – volume: 147 start-page: 137 year: 2018 ident: B93 article-title: The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. publication-title: J. Neurochem. doi: 10.1111/jnc.14481 – volume: 24 start-page: 177 year: 2014 ident: B67 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 534 start-page: 575 year: 2016 ident: B87 article-title: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. publication-title: Nature doi: 10.1038/nature18298 – volume: 115 start-page: 3674 year: 2018 ident: B28 article-title: Xio is a component of the Drosophila Sex determination pathway and RNA N6-methyladenosine methyltransferase complex. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1720945115 – volume: 13 year: 2012 ident: B70 article-title: The birth of the Epitranscriptome: deciphering the function of RNA modifications. publication-title: Genome Biol. doi: 10.1186/gb-2012-13-10-175 – volume: 8 ident: B86 article-title: Loss of FTO in adipose tissue decreases ANGPTL4 translation and alters triglyceride metabolism. publication-title: Sci. Signal. doi: 10.1126/scisignal.aab3357 – volume: 113 start-page: E2047 year: 2016 ident: B101 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1602883113 – volume: 40 start-page: 560 year: 2015 ident: B75 article-title: View from a bridge’: a new prospective on eukaryotic rRNA base modification publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.07.008 – volume: 540 start-page: 301 year: 2016 ident: B30 article-title: m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. publication-title: Nature doi: 10.1038/nature20577 – volume: 16 start-page: 971 year: 2006 ident: B23 article-title: The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.04.027 – volume: 157 start-page: 679 year: 2001 ident: B60 article-title: Molecular identification of virilizer, a gene required for the expression of the sex-determining gene sex-lethal in Drosophila melanogaster. publication-title: Genetics doi: 10.1093/genetics/157.2.679 – volume: 29 start-page: 1343 year: 2015 ident: B100 article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. publication-title: Genes Dev. doi: 10.1101/gad.262766.115 – volume: 49 start-page: 18 year: 2013 ident: B104 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 7 year: 2017 ident: B61 article-title: m1A post-transcriptional modification in tRNAs. publication-title: Biomolecules doi: 10.3390/biom7010020 – volume: 530 start-page: 441 year: 2016 ident: B17 article-title: The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. publication-title: Nature doi: 10.1038/nature16998 – volume: 32 start-page: 415 year: 2018 ident: B38 article-title: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. publication-title: Genes Dev. doi: 10.1101/gad.309146 – volume: 155 start-page: 793 year: 2013 ident: B24 article-title: RNA-methylation-dependent RNA processing controls the speed of the circadian clock. publication-title: Cell doi: 10.1016/j.cell.2013.10.026 – volume: 8 start-page: 112 year: 2017 ident: B22 article-title: Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.11.014 – volume: 23 start-page: 98 year: 2016 ident: B45 article-title: N 6-methyladenosine–encoded epitranscriptomics. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3162 – volume: 155 start-page: 740 year: 2013 ident: B29 article-title: m6A mRNA methylation: a new circadian pacesetter. publication-title: Cell doi: 10.1016/j.cell.2013.10.028 – volume: 505 start-page: 117 year: 2014 ident: B89 article-title: N 6-methyladenosine-dependent regulation of messenger RNA stability. publication-title: Nature doi: 10.1038/nature12730 – volume: 44 start-page: 87 year: 2016 ident: B2 article-title: ALKBHs-facilitated RNA modifications and de-modifications. publication-title: DNA Repair doi: 10.1016/j.dnarep.2016.05.026 – volume: 14 start-page: 1138 year: 2017 ident: B80 article-title: Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. publication-title: RNA Biol. doi: 10.1080/15476286.2016.1259781 – volume: 114 start-page: 10755 year: 2017 ident: B49 article-title: Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1703139114 – volume: 283 start-page: 25046 year: 2008 ident: B92 article-title: Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803776200 – volume: 526 start-page: 591 year: 2015 ident: B106 article-title: Dynamic m6A mRNA methylation directs translational control of heat shock response. publication-title: Nature doi: 10.1038/nature15377 – volume: 11 year: 2018 ident: B64 article-title: Multiple functions of m6A RNA methylation in cancer. publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-018-0590-8 – volume: 37 year: 2009 ident: B71 article-title: RNA cytosine methylation analysis by bisulfite sequencing. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn954 – volume: 27 start-page: 315 year: 2017 ident: B78 article-title: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. publication-title: Cell Res. doi: 10.1038/cr.2017.15 – volume: 485 start-page: 201 year: 2012 ident: B16 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. publication-title: Nature doi: 10.1038/nature11112 – volume: 30 start-page: 2672 year: 2012 ident: B62 article-title: ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. publication-title: Stem Cells doi: 10.1002/stem.1228 – volume: 23 start-page: 110 year: 2016 ident: B10 article-title: N 6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3148 – volume: 290 start-page: 20734 year: 2015 ident: B21 article-title: The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. publication-title: J. Biol. Chem. doi: 10.1074/jbc.R115.656462 – volume: 9 year: 2018 ident: B12 article-title: RNA methylation in nuclear pre-mRNA processing. publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1489 – volume: 45 start-page: 7401 year: 2017 ident: B37 article-title: ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx354 – volume: 46 start-page: D303 year: 2018 ident: B6 article-title: MODOMICS: a database of RNA modification pathways. 2017 update. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1030 – volume: 24 start-page: 870 year: 2017 ident: B20 article-title: N 6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3462 – volume: 115 start-page: 5980 year: 2018 ident: B25 article-title: Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1809838115 – volume: 7 start-page: 885 year: 2011 ident: B36 article-title: N 6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 287 start-page: 2130 year: 2012 ident: B66 article-title: Crystal structure and RNA biding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.286187 – volume: 9 year: 2018 ident: B14 article-title: N 6-methyladenosine links RNA metabolism to cancer progression. publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0129-x – volume: 30 start-page: 952 year: 2018 ident: B4 article-title: An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.17.00833 – volume: 29 start-page: 445 year: 2017 ident: B15 article-title: Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs. publication-title: Plant Cell doi: 10.1105/tpc.16.00751 – volume: 4 start-page: 35 year: 2013 ident: B34 article-title: Transfer RNA modifications: nature’s combinatorial chemistry playground. publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1144 – volume: 43 start-page: 4121 year: 2015 ident: B52 article-title: Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv234 – volume: 8 start-page: 284 year: 2014 ident: B72 article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 50 sites. publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.048 – volume: 352 start-page: 1408 year: 2016 ident: B27 article-title: Messenger RNA modifications: form, distribution and function. publication-title: Science doi: 10.1126/science.aad8711 – volume: 161 start-page: 1388 ident: B90 article-title: N 6-methyladenosine modulates messenger RNA translation efficiency. publication-title: Cell doi: 10.1016/j.cell.2015.05.014 – volume: 100 start-page: 148 year: 2014 ident: B76 article-title: Decreased N6-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALK BH5. publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-1893 – volume: 40 start-page: 5023 year: 2012 ident: B82 article-title: Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks144 – volume: 7 start-page: 494 year: 2015 ident: B63 article-title: Non-homologous functions of AlkB homologs. publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjv029 – volume: 5 year: 2014 ident: B46 article-title: Unique features of the m6A methylome in Arabidopsis thaliana. publication-title: Nat. Commun. doi: 10.1038/ncomms6630 – volume: 107 start-page: 7095 year: 2010 ident: B58 article-title: Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0911635107 – volume: 11 start-page: 1180 ident: B41 article-title: Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. publication-title: RNA Biol. doi: 10.4161/rna.36281 – volume: 31 start-page: 127 year: 2017 ident: B42 article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 7 year: 2017 ident: B85 article-title: Chemical and conformational diversity of modified nucleosides affects tRNA structure and function. publication-title: Biomolecules doi: 10.3390/biom7010029 – volume: 20 start-page: 285 year: 2018 ident: B32 article-title: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 4 year: 2018 ident: B99 article-title: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. publication-title: Cell Discov. doi: 10.1038/s41421-018-0019-0 – volume: 29 start-page: 2995 year: 2017 ident: B19 article-title: ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. publication-title: Plant Cell doi: 10.1105/tpc.16.00912 – volume: 495 start-page: 98 year: 2018 ident: B57 article-title: Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.158 – volume: 47 start-page: 67 year: 2017 ident: B94 article-title: Readers, writers and erasers of N6-methylated adenosine modification. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2017.05.011 – volume: 7 year: 2018 ident: B35 article-title: ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. publication-title: eLife doi: 10.7554/eLife.30919 – volume: 24 start-page: 1403 year: 2014 ident: B103 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. publication-title: Cell Res. doi: 10.1038/cr.2014.151 – volume: 45 start-page: 11356 year: 2017 ident: B5 article-title: N 6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx778 – volume: 3 year: 2012 ident: B7 article-title: Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00048 – volume: 15 start-page: 313 year: 2014 ident: B53 article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3785 – volume: 7 year: 2017 ident: B84 article-title: AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. publication-title: Sci. Rep. doi: 10.1038/srep42271 – volume: 540 start-page: 242 year: 2016 ident: B39 article-title: m6A modulates neuronal functions and sex determination in Drosophila. publication-title: Nature doi: 10.1038/nature20568 – volume: 68 start-page: 978 year: 2017 ident: B11 article-title: Transcriptome-wide analysis of roles for tRNA modifications in translational regulation. publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.11.002 – volume: 7 year: 2016 ident: B18 article-title: YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. publication-title: Nat. Commun. doi: 10.1038/ncomms12626 – volume: 30 start-page: 63 year: 2015 ident: B59 article-title: KH-RNA interactions: back in the groove. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.01.002 – volume: 38 start-page: 186 year: 2016 ident: B77 article-title: N 6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.06.008 – volume: 12 start-page: 1078 year: 1992 ident: B74 article-title: IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. publication-title: Mol. Cell. Biol. doi: 10.1128/mcb.12.3.1078 – volume: 111 start-page: 13834 year: 2014 ident: B47 article-title: Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1412742111 – volume: 347 start-page: 1002 year: 2015 ident: B26 article-title: m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. publication-title: Science doi: 10.1126/science.1261417 – volume: 30 start-page: 968 year: 2018 ident: B91 article-title: The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. publication-title: Plant Cell doi: 10.1105/tpc.17.00934 – volume: 551 start-page: 251 year: 2017 ident: B69 article-title: The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. publication-title: Nature doi: 10.1038/nature24456 – volume: 57 start-page: 1097 year: 2006 ident: B48 article-title: Dissecting salt stress pathways. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj098 – volume: 32 start-page: 1169 ident: B40 article-title: Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice. publication-title: Plant Mol. Biol. Rep. doi: 10.1007/s11105-014-0724-2 – volume: 139 start-page: 17249 year: 2017 ident: B3 article-title: RNA chemical proteomics approach reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome. publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09213 – volume: 39 start-page: 371 year: 2017 ident: B65 article-title: Epitranscriptome: m6A and its function in stem cell biology. publication-title: Genes Genomics doi: 10.1007/s13258-016-0507-2 – volume: 33 start-page: 1561 year: 2013 ident: B33 article-title: The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01523-12 |
SSID | ssj0000500997 |
Score | 2.518138 |
SecondaryResourceType | review_article |
Snippet | Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 500 |
SubjectTerms | abiotic stress epitranscriptome Plant Science RNA metabolism RNA methylation RNA modification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeBNeMhIDS2jsxE4ytqgIIbUDUKlbZDuOqFSlFaQD_567OK1SBGJhyRDbsXVn-76L7z4TcgOusQlyqX0dwCNSpvA1nr_LJAg1Ek9Kiz_0hyP5OI6eJmLSuuoLY8IcPbATXBfsS6CMMYWxeSQiq5MCEI22hWLMMFnnkYPNazlTjtUboU_suHzAC0u7xWKG7NwM6SkF5rO1zFDN1v8TxPweKdkyPQ97ZLfBjLTnxrpPtmx5QLb7c8B1n4fkZbCYVmhx6vWPScb0edSjQwsqcIFudFpSvJyooq0QIarKnPb0dA4fpS91xgh9dgGz9uOIjB8Gr_ePfnNVgm8ikVZ-zADHxYoplirBc6YFL8KoUFLmLDAAyXQe21SAUgIrI50k2gRGhcoam0qkwDsmnXJe2lNCueCpjtOCQ2soyFNQmA0D0EDCreSRR-5WkstMwyOO11nMMvAnUNQZijpDUWe1qD1yu26wcBQav1ftoyrW1ZD7un4BMyJrZkT214zwyPVKkRmsFTwAUaWdL6EjgI8AMcNYeOTEKXbdVQibPmxQ3CPxhso3xrJZUk7faj5uCV4jZ-HZfwz-nOygOPC8isUXpFO9L-0lwJ5KX9Uz_As5UQMq priority: 102 providerName: Directory of Open Access Journals |
Title | Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31110512 https://www.proquest.com/docview/2232085375 https://pubmed.ncbi.nlm.nih.gov/PMC6499213 https://doaj.org/article/1520acccfced454eb8f916befa11c167 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYm2IHLBGywAKs8icMuAduJ7eSAUEH8EFI5AJV6i2zHYZWqpCtBgv-e95K0o1N345JDbMfWe7Hf9-zn7xFyCK6xY7myoWXwiI0rQovn7yphkUXiSeVxQ39wq66H8c1Ijv6mA-oE-LTStcN8UsPZ5Ojlz-spTPgT9DjB3h4X0wkSb3NknpQM_Pd1MEsa0xkMOqzfEn0jGtItvc-qdkuWqSHwX4U6_w2efGeNLjfJlw5G0n6r9y3yyZfb5PNZBVDv9Su5v5iOazRCzZKA947p3W2fDjxopY19o-OSYr6imr6LGqKmzGnfjiv4KL1vLpHQuzaG1j99I8PLi4fz67DLnhC6WKZ1qDlAO2244amRIudWiiKKC6NUzpkDlGZz7VMJemJexTZJrGPORMY7nypkxdsha2VV-u-ECilSq9NCQGsoyFPQoY-Yc0UivBJxQI7mkstcRy2OGS4mGbgYKOoMRZ2hqLNG1AH5tWgwbVk1_l_1DFWxqIZ02M2LavaYdbMrAxDCjIPxOJ_HMvY2KQD2Wl8Yzh1XOiA_54rMYPrgmYgpffUMHQGiBNQZaRmQ3Vaxi64isAOwZomA6CWVL41luaQc_24ouhU4koJHex8x-H2ygeLAIyyuD8haPXv2PwAJ1bbX7CDA82rEe83f_gaCKAwL |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitranscriptomic+RNA+Methylation+in+Plant+Development+and+Abiotic+Stress+Responses&rft.jtitle=Frontiers+in+plant+science&rft.au=Jianzhong+Hu&rft.au=Stefano+Manduzio&rft.au=Hunseung+Kang&rft.date=2019-04-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00500&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1520acccfced454eb8f916befa11c167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |