Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses

Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as -methyladenosine (m A) and 5-methylcytidine (m C) is the most prevalent mRNA modifications found in eukaryotes...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 10; p. 500
Main Authors Hu, Jianzhong, Manduzio, Stefano, Kang, Hunseung
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as -methyladenosine (m A) and 5-methylcytidine (m C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
AbstractList Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N 6 -methyladenosine (m 6 A) and 5-methylcytidine (m 5 C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as “writers (methyltransferase),” “readers (RNA-binding protein),” and “erasers (demethylase),” respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as “writers (methyltransferase),” “readers (RNA-binding protein),” and “erasers (demethylase),” respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N 6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as N 6-methyladenosine (m6A) and 5-methylcytidine (m5C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs. Methylation of RNA bases such as -methyladenosine (m A) and 5-methylcytidine (m C) is the most prevalent mRNA modifications found in eukaryotes. In recent years, cellular factors introducing, interpreting, and deleting specific methylation marks on mRNAs, designated as "writers (methyltransferase)," "readers (RNA-binding protein)," and "erasers (demethylase)," respectively, have been identified in plants and animals. An emerging body of evidence shows that methylation on mRNAs affects diverse aspects of RNA metabolism, including stability, splicing, nucleus-to-cytoplasm export, alternative polyadenylation, and translation. Although our understanding for roles of writers, readers, and erasers in plants is far behind that for their animal counterparts, accumulating reports clearly demonstrate that these factors are essential for plant growth and abiotic stress responses. This review emphasizes the crucial roles of epitranscriptomic modifications of RNAs in new layer of gene expression regulation during the growth and response of plants to abiotic stresses.
Author Manduzio, Stefano
Hu, Jianzhong
Kang, Hunseung
AuthorAffiliation Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea
AuthorAffiliation_xml – name: Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University , Gwangju , South Korea
Author_xml – sequence: 1
  givenname: Jianzhong
  surname: Hu
  fullname: Hu, Jianzhong
– sequence: 2
  givenname: Stefano
  surname: Manduzio
  fullname: Manduzio, Stefano
– sequence: 3
  givenname: Hunseung
  surname: Kang
  fullname: Kang, Hunseung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31110512$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa2KqlDKubcqx1528Ti2E18qrShtkeiHoJV6sxxnAkZOHGwvEv99vbsUQaWePPK892bs32uyN4UJCXkLdFnXrToeZp-WjIJaUioofUEOQEq-4JL93ntS75OjlG4o3YqUal6R_RoAqAB2QC5PZ5ejmZKNbs5hdLa6-LaqvmK-vvcmuzBVbqp-eDPl6iPeoQ_ziKU2U1-tOhdyMVzmiClVF5jmMCVMb8jLwfiERw_nIfn16fTnyZfF-ffPZyer84XlQuVFA6ppGgMGlBGsh06woeaDkbIHakUjur5BJXrZUZS8a9vOUmtqgxaVFJzXh-Rsl9sHc6Pn6EYT73UwTm8vQrzSJpYFPWoQjBpr7WCx54Jj1w4KZIeDAbAgm5L1YZc1r7sRe1veGI1_Fvq8M7lrfRXutORKMahLwPuHgBhu15iyHl2y6MvPYVgnzVjNaCvqRhTpu6ezHof8pVIExzuBjSGliMOjBKjeoNcb9HqDXm-pFof4x2Fd3uIryzr_X98fQCW1DA
CitedBy_id crossref_primary_10_3390_ijms23158299
crossref_primary_10_3390_plants13070982
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_1080_10495398_2022_2065999
crossref_primary_10_1093_plcell_koad103
crossref_primary_10_1186_s12870_024_05114_4
crossref_primary_10_1186_s12870_024_05425_6
crossref_primary_10_1016_j_envexpbot_2022_104945
crossref_primary_10_1111_tpj_15872
crossref_primary_10_1111_pbi_13223
crossref_primary_10_3389_fpls_2023_1167789
crossref_primary_10_1111_tpj_15951
crossref_primary_10_3389_fpls_2023_1132959
crossref_primary_10_3389_fpls_2024_1521758
crossref_primary_10_1111_pbi_13829
crossref_primary_10_3390_horticulturae9091051
crossref_primary_10_3390_plants12142747
crossref_primary_10_3389_fcell_2021_628415
crossref_primary_10_3390_cimb45010009
crossref_primary_10_1186_s12870_024_04813_2
crossref_primary_10_1016_j_tifs_2023_104134
crossref_primary_10_1093_hr_uhad284
crossref_primary_10_3389_fcell_2021_651278
crossref_primary_10_1016_j_plaphy_2022_12_001
crossref_primary_10_1016_j_micres_2024_127710
crossref_primary_10_1016_j_lfs_2023_122372
crossref_primary_10_3390_genes12081121
crossref_primary_10_7717_peerj_12719
crossref_primary_10_1111_tpj_15270
crossref_primary_10_1007_s12298_022_01260_x
crossref_primary_10_1371_journal_pone_0289068
crossref_primary_10_1016_j_csbj_2023_01_012
crossref_primary_10_3390_ijms23042091
crossref_primary_10_1093_plcell_koac346
crossref_primary_10_1016_j_ijbiomac_2022_08_182
crossref_primary_10_1111_jipb_13009
crossref_primary_10_1186_s12870_025_06134_4
crossref_primary_10_3389_fpls_2022_832177
crossref_primary_10_3390_ijms252211912
crossref_primary_10_1093_bfgp_elaa021
crossref_primary_10_1111_pbi_13913
crossref_primary_10_1111_pce_14447
crossref_primary_10_3390_plants9101308
crossref_primary_10_3390_ijms21186707
crossref_primary_10_1016_j_jbc_2022_101671
crossref_primary_10_1007_s00425_024_04491_2
crossref_primary_10_1128_msphere_00552_23
crossref_primary_10_1016_j_plaphy_2022_09_029
crossref_primary_10_3389_fpls_2021_687826
crossref_primary_10_1016_j_pbi_2022_102287
crossref_primary_10_1080_15476286_2021_1909321
crossref_primary_10_1186_s12284_021_00502_y
crossref_primary_10_1111_brv_12661
crossref_primary_10_1016_j_plaphy_2023_108255
crossref_primary_10_3390_ijms222312912
crossref_primary_10_3389_fpls_2022_939843
crossref_primary_10_3390_plants11081033
crossref_primary_10_1094_PHYTO_12_23_0474_R
crossref_primary_10_3389_fpls_2021_702303
crossref_primary_10_1016_j_plaphy_2022_04_031
crossref_primary_10_1093_jxb_erae171
crossref_primary_10_3389_fpls_2020_00181
crossref_primary_10_3390_ijms21207508
crossref_primary_10_1080_07388551_2020_1751059
crossref_primary_10_1007_s12374_022_09351_8
crossref_primary_10_1515_oncologie_2023_0440
crossref_primary_10_3389_fpls_2023_1153840
crossref_primary_10_3390_genes12081106
crossref_primary_10_1016_j_xplc_2024_101064
crossref_primary_10_1094_MPMI_35_2
crossref_primary_10_1002_iub_2276
crossref_primary_10_1016_j_jia_2025_01_001
crossref_primary_10_1016_j_envexpbot_2023_105306
crossref_primary_10_3390_ijms21124548
crossref_primary_10_1111_tpj_16274
crossref_primary_10_3390_ijms222111387
crossref_primary_10_1016_j_bbrep_2024_101677
crossref_primary_10_3389_fpls_2019_01220
crossref_primary_10_1094_MPMI_09_21_0221_CR
crossref_primary_10_1016_j_gpb_2023_02_003
crossref_primary_10_3389_fpls_2022_1064131
crossref_primary_10_1016_j_ijbiomac_2023_127769
crossref_primary_10_3390_horticulturae8050462
crossref_primary_10_1007_s12374_020_09261_7
crossref_primary_10_1093_jxb_erac461
crossref_primary_10_1002_wrna_1639
crossref_primary_10_1007_s00299_023_03046_1
crossref_primary_10_1093_pcp_pcab060
crossref_primary_10_1016_j_ncrops_2024_100044
crossref_primary_10_1093_hr_uhad174
crossref_primary_10_3390_ijms24065713
crossref_primary_10_1016_j_ygeno_2022_110542
crossref_primary_10_1093_plphys_kiab509
crossref_primary_10_1111_ppl_13505
crossref_primary_10_1007_s00497_021_00428_x
Cites_doi 10.1371/journal.pone.0030588
10.1038/nchembio.1654
10.1016/j.gpb.2018.04.002
10.7554/eLife.18434
10.1038/cr.2017.99
10.1146/annurev-cellbio-100616-060758
10.1111/nph.14586
10.1016/j.molcel.2016.03.021
10.1038/nature21671
10.1016/j.molcel.2016.01.012
10.1073/pnas.1717794115
10.1016/j.cell.2015.10.012
10.1105/tpc.17.00854
10.1038/cddis.2017.122
10.1105/tpc.108.058883
10.1016/j.cell.2015.08.011
10.1093/nar/gkq1028
10.1016/j.stem.2015.01.016
10.1002/1873-3468.13092
10.1016/j.molp.2017.09.013
10.1016/j.ccell.2017.02.013
10.1038/nature21022
10.3389/fpls.2018.00519
10.1038/nature17640
10.1111/jnc.14481
10.1038/cr.2014.3
10.1038/nature18298
10.1073/pnas.1720945115
10.1186/gb-2012-13-10-175
10.1126/scisignal.aab3357
10.1073/pnas.1602883113
10.1016/j.tibs.2015.07.008
10.1038/nature20577
10.1016/j.cub.2006.04.027
10.1093/genetics/157.2.679
10.1101/gad.262766.115
10.1016/j.molcel.2012.10.015
10.3390/biom7010020
10.1038/nature16998
10.1101/gad.309146
10.1016/j.cell.2013.10.026
10.1016/j.stemcr.2016.11.014
10.1038/nsmb.3162
10.1016/j.cell.2013.10.028
10.1038/nature12730
10.1016/j.dnarep.2016.05.026
10.1080/15476286.2016.1259781
10.1073/pnas.1703139114
10.1074/jbc.M803776200
10.1038/nature15377
10.1186/s13045-018-0590-8
10.1093/nar/gkn954
10.1038/cr.2017.15
10.1038/nature11112
10.1002/stem.1228
10.1038/nsmb.3148
10.1074/jbc.R115.656462
10.1002/wrna.1489
10.1093/nar/gkx354
10.1093/nar/gkx1030
10.1038/nsmb.3462
10.1073/pnas.1809838115
10.1038/nchembio.687
10.1074/jbc.M111.286187
10.1038/s41419-017-0129-x
10.1105/tpc.17.00833
10.1105/tpc.16.00751
10.1002/wrna.1144
10.1093/nar/gkv234
10.1016/j.celrep.2014.05.048
10.1126/science.aad8711
10.1016/j.cell.2015.05.014
10.1210/jc.2014-1893
10.1093/nar/gks144
10.1093/jmcb/mjv029
10.1038/ncomms6630
10.1073/pnas.0911635107
10.4161/rna.36281
10.1016/j.ccell.2016.11.017
10.3390/biom7010029
10.1038/s41556-018-0045-z
10.1038/s41421-018-0019-0
10.1105/tpc.16.00912
10.1016/j.bbrc.2017.10.158
10.1016/j.sbi.2017.05.011
10.7554/eLife.30919
10.1038/cr.2014.151
10.1093/nar/gkx778
10.3389/fpls.2012.00048
10.1038/nrm3785
10.1038/srep42271
10.1038/nature20568
10.1016/j.molcel.2017.11.002
10.1038/ncomms12626
10.1016/j.sbi.2015.01.002
10.1016/j.devcel.2016.06.008
10.1128/mcb.12.3.1078
10.1073/pnas.1412742111
10.1126/science.1261417
10.1105/tpc.17.00934
10.1038/nature24456
10.1093/jxb/erj098
10.1007/s11105-014-0724-2
10.1021/jacs.7b09213
10.1007/s13258-016-0507-2
10.1128/MCB.01523-12
ContentType Journal Article
Copyright Copyright © 2019 Hu, Manduzio and Kang. 2019 Hu, Manduzio and Kang
Copyright_xml – notice: Copyright © 2019 Hu, Manduzio and Kang. 2019 Hu, Manduzio and Kang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2019.00500
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_1520acccfced454eb8f916befa11c167
PMC6499213
31110512
10_3389_fpls_2019_00500
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-719777a1a19a52d1b52f34fa66d10c575bd7e95d6b0e64b88bc0ca3aece965443
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:32:41 EDT 2025
Thu Aug 21 14:08:45 EDT 2025
Fri Jul 11 09:42:00 EDT 2025
Thu Jan 02 22:59:50 EST 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 02:06:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RNA modification
epitranscriptome
RNA methylation
RNA metabolism
abiotic stress
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-719777a1a19a52d1b52f34fa66d10c575bd7e95d6b0e64b88bc0ca3aece965443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Andreas Bachmair, University of Vienna, Austria; Byungho-Ho Kang, The Chinese University of Hong Kong, China
These authors have contributed equally to this work
Edited by: Sang Yeol Lee, Gyeongsang National University, South Korea
This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2019.00500
PMID 31110512
PQID 2232085375
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1520acccfced454eb8f916befa11c167
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6499213
proquest_miscellaneous_2232085375
pubmed_primary_31110512
crossref_primary_10_3389_fpls_2019_00500
crossref_citationtrail_10_3389_fpls_2019_00500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-17
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-17
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Jia (B36) 2011; 7
Mielecki (B56) 2012; 7
Dominissini (B16) 2012; 485
Zhao (B103) 2014; 24
David (B15) 2017; 29
Kawarada (B37) 2017; 45
Fustin (B24) 2013; 155
Bodi (B7) 2012; 3
Meyer (B53) 2014; 15
Chen (B9) 2015; 16
Flores (B22) 2017; 8
Dai (B14) 2018; 9
Gilbert (B27) 2016; 352
Wu (B94) 2017; 47
Tang (B83) 2018; 115
Widagdo (B93) 2018; 147
Luo (B46) 2014; 5
Mauer (B50) 2018; 592
Jackman (B34) 2013; 4
Haussmann (B30) 2016; 540
Zheng (B104) 2013; 49
Sloan (B80) 2017; 14
Arguello (B3) 2017; 139
Fedeles (B21) 2015; 290
Sledz (B79) 2016; 5
Bartosovic (B5) 2017; 45
Cui (B13) 2017; 10
Li (B42) 2017; 31
Hsu (B31) 2017; 27
Alemu (B2) 2016; 44
Cantara (B8) 2010; 39
Lin (B44) 2016; 62
Pan (B64) 2018; 11
Park (B65) 2017; 39
Schwartz (B72) 2014; 8
Zhang (B101) 2016; 113
Saletore (B70) 2012; 13
Yue (B100) 2015; 29
Růžička (B68) 2017; 215
Luo (B47) 2014; 111
Li (B41); 11
Meyer (B55) 2015; 163
Wang (B90); 161
Wang (B88) 2017; 8
Choi (B10) 2016; 23
Shi (B78) 2017; 27
Zhang (B102) 2017; 31
Väre (B85) 2017; 7
Wei (B91) 2018; 30
Li (B40); 32
Zhou (B106) 2015; 526
Müller (B57) 2018; 495
Safra (B69) 2017; 551
Liao (B43) 2018; 16
Schaefer (B71) 2009; 37
Song (B81) 2018; 9
Wang (B87) 2016; 534
Xiao (B97) 2016; 61
Arribas-Hernández (B4) 2018; 30
Shah (B74) 1992; 12
Squires (B82) 2012; 40
Chou (B11) 2017; 68
Ougland (B62) 2012; 30
Jain (B35) 2018; 7
Scutenaire (B73) 2018; 30
Boccaletto (B6) 2018; 46
Nelson (B58) 2010; 107
Zhong (B105) 2008; 20
Nicastro (B59) 2015; 30
Wang (B89) 2014; 505
Hastings (B29) 2013; 155
Meyer (B54) 2017; 33
Du (B18) 2016; 7
Alarcon (B1) 2015; 162
Niessen (B60) 2001; 157
Duan (B19) 2017; 29
Pastore (B66) 2012; 287
Yue (B99) 2018; 4
Dominissini (B17) 2016; 530
Sharma (B75) 2015; 40
Shen (B76) 2014; 100
Merret (B52) 2015; 43
Frye (B23) 2006; 16
Ma (B48) 2006; 57
Ougland (B63) 2015; 7
Oerum (B61) 2017; 7
Knuckles (B38) 2018; 32
Hussain (B33) 2013; 33
Westbye (B92) 2008; 283
Martínez-Pérez (B49) 2017; 114
Mauer (B51) 2017; 541
Fustin (B25) 2018; 115
Liu (B45) 2016; 23
Guo (B28) 2018; 115
Wu (B95) 2016; 532
Geula (B26) 2015; 347
Wang (B86); 8
Xiang (B96) 2017; 543
Lence (B39) 2016; 540
Shen (B77) 2016; 38
Ueda (B84) 2017; 7
Edupuganti (B20) 2017; 24
Covelo-Molares (B12) 2018; 9
Huang (B32) 2018; 20
Ping (B67) 2014; 24
Xu (B98) 2014; 10
References_xml – volume: 7
  year: 2012
  ident: B56
  article-title: Novel AlkB dioxygenases- alternative models for in silico and in vivo studies.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030588
– volume: 10
  start-page: 927
  year: 2014
  ident: B98
  article-title: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1654
– volume: 16
  start-page: 99
  year: 2018
  ident: B43
  article-title: YTH domain: a family of N6-methyladenosine (m6A) readers.
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2018.04.002
– volume: 5
  year: 2016
  ident: B79
  article-title: Structural insights into the molecular mechanism of the m6A writer complex.
  publication-title: eLife
  doi: 10.7554/eLife.18434
– volume: 27
  start-page: 1115
  year: 2017
  ident: B31
  article-title: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis.
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.99
– volume: 33
  start-page: 319
  year: 2017
  ident: B54
  article-title: Rethinking m6A readers, writers and erasers.
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060758
– volume: 215
  start-page: 157
  year: 2017
  ident: B68
  article-title: Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI.
  publication-title: New Phytol.
  doi: 10.1111/nph.14586
– volume: 62
  start-page: 335
  year: 2016
  ident: B44
  article-title: The m6A methyltransferase METTL3 promotes translation in human cancer cells.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.03.021
– volume: 543
  start-page: 573
  year: 2017
  ident: B96
  article-title: RNA m6A methylation regulates the ultraviolet-induced DNA damage response.
  publication-title: Nature
  doi: 10.1038/nature21671
– volume: 61
  start-page: 507
  year: 2016
  ident: B97
  article-title: Nuclear m6A reader YTHDC1 regulates mRNA splicing.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.012
– volume: 115
  start-page: E325
  year: 2018
  ident: B83
  article-title: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1717794115
– volume: 163
  start-page: 999
  year: 2015
  ident: B55
  article-title: 5′ UTR m6A promotes cap-independent translation.
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.012
– volume: 30
  start-page: 986
  year: 2018
  ident: B73
  article-title: The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00854
– volume: 8
  year: 2017
  ident: B88
  article-title: FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis.
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.122
– volume: 20
  start-page: 1278
  year: 2008
  ident: B105
  article-title: MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor.
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.058883
– volume: 162
  start-page: 1299
  year: 2015
  ident: B1
  article-title: HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events.
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.011
– volume: 39
  start-page: D195
  year: 2010
  ident: B8
  article-title: The RNA modification database RNAMDB: 2011 update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1028
– volume: 16
  start-page: 289
  year: 2015
  ident: B9
  article-title: m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.016
– volume: 592
  start-page: 2012
  year: 2018
  ident: B50
  article-title: FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications.
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13092
– volume: 10
  start-page: 1387
  year: 2017
  ident: B13
  article-title: 5-Methylcytosine RNA methylation in Arabidopsis thaliana.
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.09.013
– volume: 31
  start-page: 591
  year: 2017
  ident: B102
  article-title: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.013
– volume: 541
  start-page: 371
  year: 2017
  ident: B51
  article-title: Reversible methylation of m6Am in the 5′ cap controls mRNA stability.
  publication-title: Nature
  doi: 10.1038/nature21022
– volume: 9
  year: 2018
  ident: B81
  article-title: Transcriptome-wide annotation of m5C RNA modifications using machine learning.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00519
– volume: 532
  start-page: 329
  year: 2016
  ident: B95
  article-title: DNA methylation on N6-adenine in mammalian embryonic stem cells.
  publication-title: Nature
  doi: 10.1038/nature17640
– volume: 147
  start-page: 137
  year: 2018
  ident: B93
  article-title: The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity.
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14481
– volume: 24
  start-page: 177
  year: 2014
  ident: B67
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 534
  start-page: 575
  year: 2016
  ident: B87
  article-title: Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex.
  publication-title: Nature
  doi: 10.1038/nature18298
– volume: 115
  start-page: 3674
  year: 2018
  ident: B28
  article-title: Xio is a component of the Drosophila Sex determination pathway and RNA N6-methyladenosine methyltransferase complex.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1720945115
– volume: 13
  year: 2012
  ident: B70
  article-title: The birth of the Epitranscriptome: deciphering the function of RNA modifications.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-10-175
– volume: 8
  ident: B86
  article-title: Loss of FTO in adipose tissue decreases ANGPTL4 translation and alters triglyceride metabolism.
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aab3357
– volume: 113
  start-page: E2047
  year: 2016
  ident: B101
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1602883113
– volume: 40
  start-page: 560
  year: 2015
  ident: B75
  article-title: View from a bridge’: a new prospective on eukaryotic rRNA base modification
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.07.008
– volume: 540
  start-page: 301
  year: 2016
  ident: B30
  article-title: m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination.
  publication-title: Nature
  doi: 10.1038/nature20577
– volume: 16
  start-page: 971
  year: 2006
  ident: B23
  article-title: The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.04.027
– volume: 157
  start-page: 679
  year: 2001
  ident: B60
  article-title: Molecular identification of virilizer, a gene required for the expression of the sex-determining gene sex-lethal in Drosophila melanogaster.
  publication-title: Genetics
  doi: 10.1093/genetics/157.2.679
– volume: 29
  start-page: 1343
  year: 2015
  ident: B100
  article-title: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation.
  publication-title: Genes Dev.
  doi: 10.1101/gad.262766.115
– volume: 49
  start-page: 18
  year: 2013
  ident: B104
  article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.015
– volume: 7
  year: 2017
  ident: B61
  article-title: m1A post-transcriptional modification in tRNAs.
  publication-title: Biomolecules
  doi: 10.3390/biom7010020
– volume: 530
  start-page: 441
  year: 2016
  ident: B17
  article-title: The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA.
  publication-title: Nature
  doi: 10.1038/nature16998
– volume: 32
  start-page: 415
  year: 2018
  ident: B38
  article-title: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d.
  publication-title: Genes Dev.
  doi: 10.1101/gad.309146
– volume: 155
  start-page: 793
  year: 2013
  ident: B24
  article-title: RNA-methylation-dependent RNA processing controls the speed of the circadian clock.
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.026
– volume: 8
  start-page: 112
  year: 2017
  ident: B22
  article-title: Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility.
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2016.11.014
– volume: 23
  start-page: 98
  year: 2016
  ident: B45
  article-title: N 6-methyladenosine–encoded epitranscriptomics.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3162
– volume: 155
  start-page: 740
  year: 2013
  ident: B29
  article-title: m6A mRNA methylation: a new circadian pacesetter.
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.028
– volume: 505
  start-page: 117
  year: 2014
  ident: B89
  article-title: N 6-methyladenosine-dependent regulation of messenger RNA stability.
  publication-title: Nature
  doi: 10.1038/nature12730
– volume: 44
  start-page: 87
  year: 2016
  ident: B2
  article-title: ALKBHs-facilitated RNA modifications and de-modifications.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2016.05.026
– volume: 14
  start-page: 1138
  year: 2017
  ident: B80
  article-title: Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function.
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2016.1259781
– volume: 114
  start-page: 10755
  year: 2017
  ident: B49
  article-title: Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1703139114
– volume: 283
  start-page: 25046
  year: 2008
  ident: B92
  article-title: Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803776200
– volume: 526
  start-page: 591
  year: 2015
  ident: B106
  article-title: Dynamic m6A mRNA methylation directs translational control of heat shock response.
  publication-title: Nature
  doi: 10.1038/nature15377
– volume: 11
  year: 2018
  ident: B64
  article-title: Multiple functions of m6A RNA methylation in cancer.
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-018-0590-8
– volume: 37
  year: 2009
  ident: B71
  article-title: RNA cytosine methylation analysis by bisulfite sequencing.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn954
– volume: 27
  start-page: 315
  year: 2017
  ident: B78
  article-title: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA.
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.15
– volume: 485
  start-page: 201
  year: 2012
  ident: B16
  article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq.
  publication-title: Nature
  doi: 10.1038/nature11112
– volume: 30
  start-page: 2672
  year: 2012
  ident: B62
  article-title: ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.
  publication-title: Stem Cells
  doi: 10.1002/stem.1228
– volume: 23
  start-page: 110
  year: 2016
  ident: B10
  article-title: N 6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3148
– volume: 290
  start-page: 20734
  year: 2015
  ident: B21
  article-title: The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.656462
– volume: 9
  year: 2018
  ident: B12
  article-title: RNA methylation in nuclear pre-mRNA processing.
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1489
– volume: 45
  start-page: 7401
  year: 2017
  ident: B37
  article-title: ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx354
– volume: 46
  start-page: D303
  year: 2018
  ident: B6
  article-title: MODOMICS: a database of RNA modification pathways. 2017 update.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1030
– volume: 24
  start-page: 870
  year: 2017
  ident: B20
  article-title: N 6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3462
– volume: 115
  start-page: 5980
  year: 2018
  ident: B25
  article-title: Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1809838115
– volume: 7
  start-page: 885
  year: 2011
  ident: B36
  article-title: N 6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.687
– volume: 287
  start-page: 2130
  year: 2012
  ident: B66
  article-title: Crystal structure and RNA biding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.286187
– volume: 9
  year: 2018
  ident: B14
  article-title: N 6-methyladenosine links RNA metabolism to cancer progression.
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0129-x
– volume: 30
  start-page: 952
  year: 2018
  ident: B4
  article-title: An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00833
– volume: 29
  start-page: 445
  year: 2017
  ident: B15
  article-title: Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs.
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00751
– volume: 4
  start-page: 35
  year: 2013
  ident: B34
  article-title: Transfer RNA modifications: nature’s combinatorial chemistry playground.
  publication-title: Wiley Interdiscip. Rev. RNA
  doi: 10.1002/wrna.1144
– volume: 43
  start-page: 4121
  year: 2015
  ident: B52
  article-title: Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv234
– volume: 8
  start-page: 284
  year: 2014
  ident: B72
  article-title: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 50 sites.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.048
– volume: 352
  start-page: 1408
  year: 2016
  ident: B27
  article-title: Messenger RNA modifications: form, distribution and function.
  publication-title: Science
  doi: 10.1126/science.aad8711
– volume: 161
  start-page: 1388
  ident: B90
  article-title: N 6-methyladenosine modulates messenger RNA translation efficiency.
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 100
  start-page: 148
  year: 2014
  ident: B76
  article-title: Decreased N6-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALK BH5.
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2014-1893
– volume: 40
  start-page: 5023
  year: 2012
  ident: B82
  article-title: Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks144
– volume: 7
  start-page: 494
  year: 2015
  ident: B63
  article-title: Non-homologous functions of AlkB homologs.
  publication-title: J. Mol. Cell Biol.
  doi: 10.1093/jmcb/mjv029
– volume: 5
  year: 2014
  ident: B46
  article-title: Unique features of the m6A methylome in Arabidopsis thaliana.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6630
– volume: 107
  start-page: 7095
  year: 2010
  ident: B58
  article-title: Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911635107
– volume: 11
  start-page: 1180
  ident: B41
  article-title: Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification.
  publication-title: RNA Biol.
  doi: 10.4161/rna.36281
– volume: 31
  start-page: 127
  year: 2017
  ident: B42
  article-title: FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase.
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.11.017
– volume: 7
  year: 2017
  ident: B85
  article-title: Chemical and conformational diversity of modified nucleosides affects tRNA structure and function.
  publication-title: Biomolecules
  doi: 10.3390/biom7010029
– volume: 20
  start-page: 285
  year: 2018
  ident: B32
  article-title: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0045-z
– volume: 4
  year: 2018
  ident: B99
  article-title: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation.
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0019-0
– volume: 29
  start-page: 2995
  year: 2017
  ident: B19
  article-title: ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition.
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00912
– volume: 495
  start-page: 98
  year: 2018
  ident: B57
  article-title: Characterization of human AlkB homolog 1 produced in mammalian cells and demonstration of mitochondrial dysfunction in ALKBH1-deficient cells.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.10.158
– volume: 47
  start-page: 67
  year: 2017
  ident: B94
  article-title: Readers, writers and erasers of N6-methylated adenosine modification.
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2017.05.011
– volume: 7
  year: 2018
  ident: B35
  article-title: ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2.
  publication-title: eLife
  doi: 10.7554/eLife.30919
– volume: 24
  start-page: 1403
  year: 2014
  ident: B103
  article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis.
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.151
– volume: 45
  start-page: 11356
  year: 2017
  ident: B5
  article-title: N 6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx778
– volume: 3
  year: 2012
  ident: B7
  article-title: Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00048
– volume: 15
  start-page: 313
  year: 2014
  ident: B53
  article-title: The dynamic epitranscriptome: N6-methyladenosine and gene expression control.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3785
– volume: 7
  year: 2017
  ident: B84
  article-title: AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells.
  publication-title: Sci. Rep.
  doi: 10.1038/srep42271
– volume: 540
  start-page: 242
  year: 2016
  ident: B39
  article-title: m6A modulates neuronal functions and sex determination in Drosophila.
  publication-title: Nature
  doi: 10.1038/nature20568
– volume: 68
  start-page: 978
  year: 2017
  ident: B11
  article-title: Transcriptome-wide analysis of roles for tRNA modifications in translational regulation.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.11.002
– volume: 7
  year: 2016
  ident: B18
  article-title: YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12626
– volume: 30
  start-page: 63
  year: 2015
  ident: B59
  article-title: KH-RNA interactions: back in the groove.
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.01.002
– volume: 38
  start-page: 186
  year: 2016
  ident: B77
  article-title: N 6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.06.008
– volume: 12
  start-page: 1078
  year: 1992
  ident: B74
  article-title: IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/mcb.12.3.1078
– volume: 111
  start-page: 13834
  year: 2014
  ident: B47
  article-title: Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1412742111
– volume: 347
  start-page: 1002
  year: 2015
  ident: B26
  article-title: m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation.
  publication-title: Science
  doi: 10.1126/science.1261417
– volume: 30
  start-page: 968
  year: 2018
  ident: B91
  article-title: The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis.
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00934
– volume: 551
  start-page: 251
  year: 2017
  ident: B69
  article-title: The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution.
  publication-title: Nature
  doi: 10.1038/nature24456
– volume: 57
  start-page: 1097
  year: 2006
  ident: B48
  article-title: Dissecting salt stress pathways.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erj098
– volume: 32
  start-page: 1169
  ident: B40
  article-title: Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice.
  publication-title: Plant Mol. Biol. Rep.
  doi: 10.1007/s11105-014-0724-2
– volume: 139
  start-page: 17249
  year: 2017
  ident: B3
  article-title: RNA chemical proteomics approach reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09213
– volume: 39
  start-page: 371
  year: 2017
  ident: B65
  article-title: Epitranscriptome: m6A and its function in stem cell biology.
  publication-title: Genes Genomics
  doi: 10.1007/s13258-016-0507-2
– volume: 33
  start-page: 1561
  year: 2013
  ident: B33
  article-title: The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01523-12
SSID ssj0000500997
Score 2.518138
SecondaryResourceType review_article
Snippet Recent advances in methylated RNA immunoprecipitation followed by sequencing and mass spectrometry have revealed widespread chemical modifications on mRNAs....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 500
SubjectTerms abiotic stress
epitranscriptome
Plant Science
RNA metabolism
RNA methylation
RNA modification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcCCeBNeMhIDS2jsxE4ytqgIIbUDUKlbZDuOqFSlFaQD_567OK1SBGJhyRDbsXVn-76L7z4TcgOusQlyqX0dwCNSpvA1nr_LJAg1Ek9Kiz_0hyP5OI6eJmLSuuoLY8IcPbATXBfsS6CMMYWxeSQiq5MCEI22hWLMMFnnkYPNazlTjtUboU_suHzAC0u7xWKG7NwM6SkF5rO1zFDN1v8TxPweKdkyPQ97ZLfBjLTnxrpPtmx5QLb7c8B1n4fkZbCYVmhx6vWPScb0edSjQwsqcIFudFpSvJyooq0QIarKnPb0dA4fpS91xgh9dgGz9uOIjB8Gr_ePfnNVgm8ikVZ-zADHxYoplirBc6YFL8KoUFLmLDAAyXQe21SAUgIrI50k2gRGhcoam0qkwDsmnXJe2lNCueCpjtOCQ2soyFNQmA0D0EDCreSRR-5WkstMwyOO11nMMvAnUNQZijpDUWe1qD1yu26wcBQav1ftoyrW1ZD7un4BMyJrZkT214zwyPVKkRmsFTwAUaWdL6EjgI8AMcNYeOTEKXbdVQibPmxQ3CPxhso3xrJZUk7faj5uCV4jZ-HZfwz-nOygOPC8isUXpFO9L-0lwJ5KX9Uz_As5UQMq
  priority: 102
  providerName: Directory of Open Access Journals
Title Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses
URI https://www.ncbi.nlm.nih.gov/pubmed/31110512
https://www.proquest.com/docview/2232085375
https://pubmed.ncbi.nlm.nih.gov/PMC6499213
https://doaj.org/article/1520acccfced454eb8f916befa11c167
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYm2IHLBGywAKs8icMuAduJ7eSAUEH8EFI5AJV6i2zHYZWqpCtBgv-e95K0o1N345JDbMfWe7Hf9-zn7xFyCK6xY7myoWXwiI0rQovn7yphkUXiSeVxQ39wq66H8c1Ijv6mA-oE-LTStcN8UsPZ5Ojlz-spTPgT9DjB3h4X0wkSb3NknpQM_Pd1MEsa0xkMOqzfEn0jGtItvc-qdkuWqSHwX4U6_w2efGeNLjfJlw5G0n6r9y3yyZfb5PNZBVDv9Su5v5iOazRCzZKA947p3W2fDjxopY19o-OSYr6imr6LGqKmzGnfjiv4KL1vLpHQuzaG1j99I8PLi4fz67DLnhC6WKZ1qDlAO2244amRIudWiiKKC6NUzpkDlGZz7VMJemJexTZJrGPORMY7nypkxdsha2VV-u-ECilSq9NCQGsoyFPQoY-Yc0UivBJxQI7mkstcRy2OGS4mGbgYKOoMRZ2hqLNG1AH5tWgwbVk1_l_1DFWxqIZ02M2LavaYdbMrAxDCjIPxOJ_HMvY2KQD2Wl8Yzh1XOiA_54rMYPrgmYgpffUMHQGiBNQZaRmQ3Vaxi64isAOwZomA6CWVL41luaQc_24ouhU4koJHex8x-H2ygeLAIyyuD8haPXv2PwAJ1bbX7CDA82rEe83f_gaCKAwL
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epitranscriptomic+RNA+Methylation+in+Plant+Development+and+Abiotic+Stress+Responses&rft.jtitle=Frontiers+in+plant+science&rft.au=Jianzhong+Hu&rft.au=Stefano+Manduzio&rft.au=Hunseung+Kang&rft.date=2019-04-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=10&rft_id=info:doi/10.3389%2Ffpls.2019.00500&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1520acccfced454eb8f916befa11c167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon