Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors

In the present study, novel series of kojic acid derivatives conjugated to amino pyridine moiety were designed and synthesized to explore their inhibitory activity against tyrosinase. To this end, the structure of all derivatives was characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. N...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 11; p. e22009
Main Authors Rezapour Niri, Davood, Sayahi, Mohammad Hosein, Behrouz, Somayeh, Moazzam, Ali, Rasekh, Fatemeh, Tanideh, Nader, Irajie, Cambyz, Seif Nezhad, Mohammad, Larijani, Bagher, Iraji, Aida, Mahdavi, Mohammad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study, novel series of kojic acid derivatives conjugated to amino pyridine moiety were designed and synthesized to explore their inhibitory activity against tyrosinase. To this end, the structure of all derivatives was characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Next, all derivatives were evaluated against tyrosinase compared to the kojic acid as positive control and exhibited different inhibitory potencies. Furthermore, the antioxidant potential of all derivatives was determined. The kinetic analysis of the most active agent revealed that 3-hydroxy-6-(hydroxymethyl)-2-((3-nitrophenyl)(pyridin-2-ylamino)methyl)-4H-pyran-4-one (4h) binds to the enzyme in the uncompetitive mode of action. The docking analysis and molecular dynamic simulations showed considerable binding affinity and significant interactions with tyrosinase enzyme to target the melanogenesis pathway, proposing them as potent candidates to control hyperpigmentation in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e22009