Glycosyl Phosphatidylinositol-Anchored T-Cadherin Mediates Calcium-Dependent, Homophilic Cell Adhesion

Cadherins are a family of cell adhesion molecules that exhibit calcium-dependent, homophilic binding. Their function depends on both an HisAlaVal sequence in the first extracellular domain, EC1, and the interaction of a conserved cytoplasmic region with intracellular proteins. T-cadherin is an unusu...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 119; no. 2; pp. 451 - 461
Main Authors Vestal, Deborah J., Ranscht, Barbara
Format Journal Article
LanguageEnglish
Published New York, NY Rockefeller University Press 01.10.1992
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cadherins are a family of cell adhesion molecules that exhibit calcium-dependent, homophilic binding. Their function depends on both an HisAlaVal sequence in the first extracellular domain, EC1, and the interaction of a conserved cytoplasmic region with intracellular proteins. T-cadherin is an unusual member of the cadherin family that lacks the HisAlaVal motif and is anchored to the membrane through a glycosyl phosphatidylinositol moiety (Ranscht, B., and M. T. Dours-Zimmermann. 1991. Neuron. 7:391-402). To assay the function of T-cadherin in cell adhesion, we have transfected T-cadherin cDNA into CHO cells. Two proteins, mature T-cadherin and the uncleaved T-cadherin precursor, were produced from T-cadherin cDNA. The T-cadherin proteins differed from classical cadherins in several aspects. First, the uncleaved T-cadherin precursor was expressed, together with mature T-cadherin, on the surface of the transfected cells. Second, in the absence of calcium, T-cadherin was more resistant to proteolytic cleavage than other cadherins. Lastly, in contrast to classical cadherins, T-cadherin was not concentrated into cell-cell contracts between transfected cells in monolayer cultures. In cellular aggregation assays, T-cadherin induced calcium-dependent, homophilic adhesion which was abolished by treatment of T-cadherin-transfected cells with phosphatidylinositol-specific phospholipase C. These results demonstrate that T-cadherin is a functional cadherin that differs in several properties from classical cadherins. The function of T-cadherin in homophilic cell recognition implies that the mechanism of T-cadherin-induced adhesion is distinct from that of classical cadherins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.119.2.451