Latent class and finite mixture models for multilevel data sets

An extension of latent class (LC) and finite mixture models is described for the analysis of hierarchical data sets. As is typical in multilevel analysis, the dependence between lower-level units within higher-level units is dealt with by assuming that certain model parameters differ randomly across...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 17; no. 1; pp. 33 - 51
Main Author Vermunt, Jeroen K
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.02.2008
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An extension of latent class (LC) and finite mixture models is described for the analysis of hierarchical data sets. As is typical in multilevel analysis, the dependence between lower-level units within higher-level units is dealt with by assuming that certain model parameters differ randomly across higher-level observations. One of the special cases is an LC model in which group-level differences in the logit of belonging to a particular LC are captured with continuous random effects. Other variants are obtained by including random effects in the model for the response variables rather than for the LCs. The variant that receives most attention in this article is an LC model with discrete random effects: higher-level units are clustered based on the likelihood of their members belonging to the various LCs. This yields a model with mixture distributions at two levels, namely at the group and the subject level. This model is illustrated with three rather different empirical examples. The appendix describes an adapted version of the expectation—maximization algorithm that can be used for maximum likelihood estimation, as well as providing setups for estimating the multilevel LC model with generally available software.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280207081238