Marginal nonparametric kernel regression accounting for within-subject correlation

There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming in...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 90; no. 1; pp. 43 - 52
Main Author Wang, Naisyin
Format Journal Article
LanguageEnglish
Published Oxford University Press for Biometrika Trust 01.03.2003
SeriesBiometrika
Online AccessGet more information
ISSN0006-3444
1464-3510
DOI10.1093/biomet/90.1.43

Cover

Loading…
Abstract There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press.
AbstractList There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press.
Author Wang, Naisyin
Author_xml – fullname: Wang, Naisyin
BackLink http://econpapers.repec.org/article/oupbiomet/v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43-52.htm$$DView record in RePEc
BookMark eNotkE1LAzEQhoNUsK1ePecPbDvZfLh7lKK2UBFEz0s2nbSp22TJZpX-eyP18Mw7LwzPYWZk4oNHQu4ZLBjUfNm6cMK0rHNdCH5FpkwoUXDJYEKmAKAKLoS4IbNhOP5VJdWUvL_quHdedzTbeh11VkRn6BdGjx2NuI84DC54qo0Jo0_O76kNkf64dHC-GMb2iCZRE2LETqd8eUuure4GvPvPOfl8fvpYrYvt28tm9bgtjJB1KqQEbRB3hrUSLCCzO1XDg0HOObPQVkzYqq7yXrVlqVGiUjsQsrVcGqNtOSfrizdij6bpozvpeG7C2F8-0Xw3XNeQxzlTAvAcLsMyfUbwRpbNIZ3KX9YaY1s
CitedBy_id crossref_primary_10_1080_03610926_2012_738842
crossref_primary_10_1080_03610920500498790
crossref_primary_10_1155_2020_4710745
crossref_primary_10_1080_01621459_2013_826134
crossref_primary_10_1007_s11749_015_0462_2
crossref_primary_10_1016_j_csda_2012_02_001
crossref_primary_10_1080_10485252_2016_1191632
crossref_primary_10_1016_j_csda_2018_10_002
crossref_primary_10_1111_j_1467_9469_2006_00550_x
crossref_primary_10_1016_j_jeconom_2008_01_005
crossref_primary_10_1080_21681015_2017_1383314
crossref_primary_10_1111_j_1467_9868_2005_00530_x
crossref_primary_10_1093_biomet_asq080
crossref_primary_10_1111_j_1541_0420_2007_00980_x
crossref_primary_10_1007_s10463_009_0239_z
crossref_primary_10_1111_j_1467_9574_2010_00450_x
crossref_primary_10_1111_j_1541_0420_2008_01071_x
crossref_primary_10_1002_hpm_3468
crossref_primary_10_2139_ssrn_2206343
crossref_primary_10_1016_j_jeconom_2011_09_030
crossref_primary_10_1016_j_csda_2014_06_013
crossref_primary_10_1007_s00362_019_01125_8
crossref_primary_10_1080_17421772_2022_2095005
crossref_primary_10_1111_j_1467_9868_2004_B5595_x
crossref_primary_10_1111_j_1467_9868_2008_00671_x
crossref_primary_10_1080_01621459_2023_2169702
crossref_primary_10_1016_j_jeconom_2015_03_004
crossref_primary_10_1214_09_EJS525
crossref_primary_10_1016_j_addr_2013_04_003
crossref_primary_10_1002_jae_1099
crossref_primary_10_3150_11_BEJ386
crossref_primary_10_1016_j_jeconom_2014_12_004
crossref_primary_10_1093_ectj_utaa002
crossref_primary_10_1080_00401706_2019_1625813
crossref_primary_10_1093_biomet_asn041
crossref_primary_10_1371_journal_pone_0088864
crossref_primary_10_1080_00949655_2020_1836642
crossref_primary_10_1007_s10463_015_0513_1
crossref_primary_10_1111_j_1467_9574_2011_00486_x
crossref_primary_10_1214_10_AOS813
crossref_primary_10_1016_j_spl_2010_04_002
crossref_primary_10_1016_j_csda_2009_05_008
crossref_primary_10_1111_joes_12177
crossref_primary_10_1007_s00184_013_0434_z
crossref_primary_10_1016_j_jspi_2018_09_011
crossref_primary_10_17776_csj_671812
crossref_primary_10_1016_j_cct_2008_10_003
crossref_primary_10_1016_j_jspi_2005_03_007
crossref_primary_10_1111_j_1475_4991_2011_00446_x
crossref_primary_10_1016_j_jmva_2008_04_013
crossref_primary_10_1109_ACCESS_2022_3187767
crossref_primary_10_1016_j_jmva_2008_04_012
crossref_primary_10_1016_j_jmva_2011_10_004
crossref_primary_10_1080_10618600_2014_909733
crossref_primary_10_1002_sta4_504
crossref_primary_10_2139_ssrn_1480626
crossref_primary_10_1214_08_AOS662
crossref_primary_10_1016_j_mex_2024_102652
crossref_primary_10_1214_009053607000000523
crossref_primary_10_1016_j_jmva_2012_08_005
crossref_primary_10_1016_j_jeconom_2019_01_016
crossref_primary_10_1080_07474938_2024_2328905
crossref_primary_10_1111_j_1467_9469_2008_00616_x
crossref_primary_10_4236_ojs_2016_65071
crossref_primary_10_1080_01621459_2017_1356321
crossref_primary_10_1016_j_spl_2004_06_010
crossref_primary_10_1177_0962280220933909
crossref_primary_10_1080_07474938_2014_998149
crossref_primary_10_1214_13_AOS1194
crossref_primary_10_1007_s12561_009_9000_7
crossref_primary_10_1111_sjos_12340
crossref_primary_10_1002_sim_3928
crossref_primary_10_1016_j_jempfin_2015_07_004
crossref_primary_10_1007_s10985_006_9030_0
crossref_primary_10_1002_sim_6477
crossref_primary_10_1111_rssb_12086
crossref_primary_10_1002_cjs_11169
crossref_primary_10_1016_j_spl_2007_04_006
crossref_primary_10_3150_12_BEJ479
crossref_primary_10_1017_S0266466613000352
crossref_primary_10_1007_s11425_009_0115_6
crossref_primary_10_1080_07474938_2022_2074187
crossref_primary_10_1080_14697688_2012_738935
crossref_primary_10_1002_cjs_11290
crossref_primary_10_1016_j_jmva_2015_07_005
crossref_primary_10_1109_TCYB_2013_2285876
crossref_primary_10_1214_12_AOS1063
crossref_primary_10_1007_s00362_017_0970_0
crossref_primary_10_1080_01621459_2012_682534
crossref_primary_10_1080_02331888_2017_1354861
crossref_primary_10_1080_03610926_2019_1646767
crossref_primary_10_1111_j_1467_9469_2009_00677_x
crossref_primary_10_1111_j_1467_9868_2012_01038_x
crossref_primary_10_1002_cjs_10129
crossref_primary_10_1007_s00184_009_0268_x
crossref_primary_10_1007_s00362_017_0890_z
crossref_primary_10_1016_j_jspi_2009_09_026
crossref_primary_10_1111_j_1467_9868_2005_00533_x
crossref_primary_10_1111_j_1541_0420_2005_00490_x
crossref_primary_10_1007_s11749_014_0419_x
crossref_primary_10_1016_j_neuroimage_2013_01_034
crossref_primary_10_1016_j_jmva_2014_06_011
crossref_primary_10_1080_07474938_2020_1772569
crossref_primary_10_1111_anzs_12139
crossref_primary_10_1111_sjos_12284
crossref_primary_10_1080_00401706_2019_1604434
crossref_primary_10_1016_j_csda_2009_04_018
crossref_primary_10_1198_jasa_2010_tm10128
crossref_primary_10_1080_00949655_2023_2201007
crossref_primary_10_1111_rssb_12065
crossref_primary_10_1016_j_jmva_2016_02_006
crossref_primary_10_1198_108571107X228134
crossref_primary_10_2139_ssrn_3097813
crossref_primary_10_1108_JSBED_12_2016_0193
crossref_primary_10_2139_ssrn_2725320
crossref_primary_10_1007_s11424_012_8351_1
crossref_primary_10_1080_03610920802245758
crossref_primary_10_1080_02331888_2012_748778
crossref_primary_10_1016_j_econlet_2011_07_014
crossref_primary_10_1080_07474938_2016_1167813
crossref_primary_10_1007_s11424_007_9048_8
crossref_primary_10_1080_07474938_2019_1624403
crossref_primary_10_1080_0740817X_2016_1146423
crossref_primary_10_1080_03610918_2019_1649423
ContentType Journal Article
DBID DKI
X2L
DOI 10.1093/biomet/90.1.43
DatabaseName RePEc IDEAS
RePEc
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 52
ExternalDocumentID oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm
GroupedDBID 02
08R
0R
1AW
1TH
23N
2P
3R3
4.4
482
48X
53G
55
5GY
5RE
5VS
5WA
6.Y
70D
79B
8U8
91
AABJS
AABMN
AAIJN
AAIYJ
AAJQQ
AAMVS
AANRK
AAOGV
AAPBV
AAPQZ
AAUQX
ABBHK
ABEUO
ABFLS
ABIXL
ABPFR
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABYAD
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACTWD
ACUFI
ACUTJ
ACYTK
ADBIT
ADEIU
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADODI
ADORX
ADQLU
ADRIX
ADRTK
ADYVW
ADZXQ
AEGPL
AEKKA
AEKPW
AEMDU
AENEX
AENZO
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFRAH
AFXEN
AFXHP
AFXKK
AGINJ
AGKRT
AGSYK
AHGVY
AHXPO
AIHXQ
AIKOY
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
AQDSO
ARQIP
AS
ASAOO
ASPBG
ATDFG
ATTQO
AUCZF
AVWKF
AXUDD
AZFZN
AZQFJ
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
BYORX
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DKI
DPORF
DPPUQ
DQDLB
DSRWC
DU5
DZ
D~K
E4
EBS
ECEWR
EE
EFSUC
EJD
ELUNK
ESX
F5P
F9B
FEDTE
FLIZI
FQBLK
FVMVE
GAUVT
GJ
GJXCC
H13
H5
HAR
HGD
HQ6
HVGLF
HW0
HZ
H~9
I3
IOX
IPNFZ
J21
JAS
JMS
JPL
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NTWIH
NU-
NVLIB
O0
O9-
ODMLO
OJQWA
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQEST
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
RNS
ROL
ROX
ROZ
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
WH7
X
X2L
X7H
X7M
XFK
XHC
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
ID FETCH-LOGICAL-c459t-550aceedc1b50f0e1fd6907ce3331f0b814f89831f8b22ae5e66d045bf35ccaf2
IEDL.DBID DKI
ISSN 0006-3444
IngestDate Wed Aug 18 03:13:18 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-550aceedc1b50f0e1fd6907ce3331f0b814f89831f8b22ae5e66d045bf35ccaf2
OpenAccessLink https://academic.oup.com/biomet/article-pdf/90/1/43/582364/900043.pdf
PageCount 10
ParticipantIDs repec_primary_oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm
PublicationCentury 2000
PublicationDate 2003-03-01
PublicationDateYYYYMMDD 2003-03-01
PublicationDate_xml – month: 03
  year: 2003
  text: 2003-03-01
  day: 01
PublicationDecade 2000
PublicationSeriesTitle Biometrika
PublicationTitle Biometrika
PublicationYear 2003
Publisher Oxford University Press for Biometrika Trust
Publisher_xml – name: Oxford University Press for Biometrika Trust
SSID ssj0006656
Score 2.1214497
Snippet There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been...
SourceID repec
SourceType Index Database
StartPage 43
Title Marginal nonparametric kernel regression accounting for within-subject correlation
URI http://econpapers.repec.org/article/oupbiomet/v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43-52.htm
Volume 90
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7DIewiOhV_k4PXbG1-2RyHOqaiB3GwW0myRIZay9yE_fe-15bizYuH16ZQmjSPJN8LX95HyCU4NfLUKyZwuEnjOLMqi8wCundeJrAEYqD4-KQnU3k_U7MOadMTQBBY2hKQz2AZytBkCq77cPi5Lqsz6avhdy6sSeCyAUN6FdwWYClYCSYFBFgQfH7A3CxMhlS_m4e7dobWulJ1xRITUso2maMYNhUYeBzgSZ5u1YxfS854l-w0WJGO6obtkU4o-mS7Vo_c9EkPgWKdZ3mfPKNiLSpc0QL_DSlXmHufvoVlEd7pMrzWhNeC2lYfggJgpbgRuyjY19rhjgz1qNZR8-MOyHR8-3I9YY1eAvNSmRWDYMPimudTp5KYhDTOMfb1QQiRxsRlqYyZyaCcOc5tUEHrOUA6F4UCR0Z-SLagjeGIUK-54WnIvLgSEl6zBnBQ0N4pBwgphmMyqjomL-ucGHnrm_xv3-SK5-Cbk3_4xinpVey6ihR2RroRxmw4B5iwcheVz38ANlK-jw
linkProvider Research Papers in Economics (RePEc)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+nonparametric+kernel+regression+accounting+for+within-subject+correlation&rft.jtitle=Biometrika&rft.au=Wang%2C+Naisyin&rft.series=Biometrika&rft.date=2003-03-01&rft.pub=Oxford+University+Press+for+Biometrika+Trust&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=90&rft.issue=1&rft.spage=43&rft.epage=52&rft_id=info:doi/10.1093%2Fbiomet%2F90.1.43&rft.externalDocID=oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon