Marginal nonparametric kernel regression accounting for within-subject correlation
There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming in...
Saved in:
Published in | Biometrika Vol. 90; no. 1; pp. 43 - 52 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford University Press for Biometrika Trust
01.03.2003
|
Series | Biometrika |
Online Access | Get more information |
ISSN | 0006-3444 1464-3510 |
DOI | 10.1093/biomet/90.1.43 |
Cover
Loading…
Abstract | There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press. |
---|---|
AbstractList | There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press. |
Author | Wang, Naisyin |
Author_xml | – fullname: Wang, Naisyin |
BackLink | http://econpapers.repec.org/article/oupbiomet/v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43-52.htm$$DView record in RePEc |
BookMark | eNotkE1LAzEQhoNUsK1ePecPbDvZfLh7lKK2UBFEz0s2nbSp22TJZpX-eyP18Mw7LwzPYWZk4oNHQu4ZLBjUfNm6cMK0rHNdCH5FpkwoUXDJYEKmAKAKLoS4IbNhOP5VJdWUvL_quHdedzTbeh11VkRn6BdGjx2NuI84DC54qo0Jo0_O76kNkf64dHC-GMb2iCZRE2LETqd8eUuure4GvPvPOfl8fvpYrYvt28tm9bgtjJB1KqQEbRB3hrUSLCCzO1XDg0HOObPQVkzYqq7yXrVlqVGiUjsQsrVcGqNtOSfrizdij6bpozvpeG7C2F8-0Xw3XNeQxzlTAvAcLsMyfUbwRpbNIZ3KX9YaY1s |
CitedBy_id | crossref_primary_10_1080_03610926_2012_738842 crossref_primary_10_1080_03610920500498790 crossref_primary_10_1155_2020_4710745 crossref_primary_10_1080_01621459_2013_826134 crossref_primary_10_1007_s11749_015_0462_2 crossref_primary_10_1016_j_csda_2012_02_001 crossref_primary_10_1080_10485252_2016_1191632 crossref_primary_10_1016_j_csda_2018_10_002 crossref_primary_10_1111_j_1467_9469_2006_00550_x crossref_primary_10_1016_j_jeconom_2008_01_005 crossref_primary_10_1080_21681015_2017_1383314 crossref_primary_10_1111_j_1467_9868_2005_00530_x crossref_primary_10_1093_biomet_asq080 crossref_primary_10_1111_j_1541_0420_2007_00980_x crossref_primary_10_1007_s10463_009_0239_z crossref_primary_10_1111_j_1467_9574_2010_00450_x crossref_primary_10_1111_j_1541_0420_2008_01071_x crossref_primary_10_1002_hpm_3468 crossref_primary_10_2139_ssrn_2206343 crossref_primary_10_1016_j_jeconom_2011_09_030 crossref_primary_10_1016_j_csda_2014_06_013 crossref_primary_10_1007_s00362_019_01125_8 crossref_primary_10_1080_17421772_2022_2095005 crossref_primary_10_1111_j_1467_9868_2004_B5595_x crossref_primary_10_1111_j_1467_9868_2008_00671_x crossref_primary_10_1080_01621459_2023_2169702 crossref_primary_10_1016_j_jeconom_2015_03_004 crossref_primary_10_1214_09_EJS525 crossref_primary_10_1016_j_addr_2013_04_003 crossref_primary_10_1002_jae_1099 crossref_primary_10_3150_11_BEJ386 crossref_primary_10_1016_j_jeconom_2014_12_004 crossref_primary_10_1093_ectj_utaa002 crossref_primary_10_1080_00401706_2019_1625813 crossref_primary_10_1093_biomet_asn041 crossref_primary_10_1371_journal_pone_0088864 crossref_primary_10_1080_00949655_2020_1836642 crossref_primary_10_1007_s10463_015_0513_1 crossref_primary_10_1111_j_1467_9574_2011_00486_x crossref_primary_10_1214_10_AOS813 crossref_primary_10_1016_j_spl_2010_04_002 crossref_primary_10_1016_j_csda_2009_05_008 crossref_primary_10_1111_joes_12177 crossref_primary_10_1007_s00184_013_0434_z crossref_primary_10_1016_j_jspi_2018_09_011 crossref_primary_10_17776_csj_671812 crossref_primary_10_1016_j_cct_2008_10_003 crossref_primary_10_1016_j_jspi_2005_03_007 crossref_primary_10_1111_j_1475_4991_2011_00446_x crossref_primary_10_1016_j_jmva_2008_04_013 crossref_primary_10_1109_ACCESS_2022_3187767 crossref_primary_10_1016_j_jmva_2008_04_012 crossref_primary_10_1016_j_jmva_2011_10_004 crossref_primary_10_1080_10618600_2014_909733 crossref_primary_10_1002_sta4_504 crossref_primary_10_2139_ssrn_1480626 crossref_primary_10_1214_08_AOS662 crossref_primary_10_1016_j_mex_2024_102652 crossref_primary_10_1214_009053607000000523 crossref_primary_10_1016_j_jmva_2012_08_005 crossref_primary_10_1016_j_jeconom_2019_01_016 crossref_primary_10_1080_07474938_2024_2328905 crossref_primary_10_1111_j_1467_9469_2008_00616_x crossref_primary_10_4236_ojs_2016_65071 crossref_primary_10_1080_01621459_2017_1356321 crossref_primary_10_1016_j_spl_2004_06_010 crossref_primary_10_1177_0962280220933909 crossref_primary_10_1080_07474938_2014_998149 crossref_primary_10_1214_13_AOS1194 crossref_primary_10_1007_s12561_009_9000_7 crossref_primary_10_1111_sjos_12340 crossref_primary_10_1002_sim_3928 crossref_primary_10_1016_j_jempfin_2015_07_004 crossref_primary_10_1007_s10985_006_9030_0 crossref_primary_10_1002_sim_6477 crossref_primary_10_1111_rssb_12086 crossref_primary_10_1002_cjs_11169 crossref_primary_10_1016_j_spl_2007_04_006 crossref_primary_10_3150_12_BEJ479 crossref_primary_10_1017_S0266466613000352 crossref_primary_10_1007_s11425_009_0115_6 crossref_primary_10_1080_07474938_2022_2074187 crossref_primary_10_1080_14697688_2012_738935 crossref_primary_10_1002_cjs_11290 crossref_primary_10_1016_j_jmva_2015_07_005 crossref_primary_10_1109_TCYB_2013_2285876 crossref_primary_10_1214_12_AOS1063 crossref_primary_10_1007_s00362_017_0970_0 crossref_primary_10_1080_01621459_2012_682534 crossref_primary_10_1080_02331888_2017_1354861 crossref_primary_10_1080_03610926_2019_1646767 crossref_primary_10_1111_j_1467_9469_2009_00677_x crossref_primary_10_1111_j_1467_9868_2012_01038_x crossref_primary_10_1002_cjs_10129 crossref_primary_10_1007_s00184_009_0268_x crossref_primary_10_1007_s00362_017_0890_z crossref_primary_10_1016_j_jspi_2009_09_026 crossref_primary_10_1111_j_1467_9868_2005_00533_x crossref_primary_10_1111_j_1541_0420_2005_00490_x crossref_primary_10_1007_s11749_014_0419_x crossref_primary_10_1016_j_neuroimage_2013_01_034 crossref_primary_10_1016_j_jmva_2014_06_011 crossref_primary_10_1080_07474938_2020_1772569 crossref_primary_10_1111_anzs_12139 crossref_primary_10_1111_sjos_12284 crossref_primary_10_1080_00401706_2019_1604434 crossref_primary_10_1016_j_csda_2009_04_018 crossref_primary_10_1198_jasa_2010_tm10128 crossref_primary_10_1080_00949655_2023_2201007 crossref_primary_10_1111_rssb_12065 crossref_primary_10_1016_j_jmva_2016_02_006 crossref_primary_10_1198_108571107X228134 crossref_primary_10_2139_ssrn_3097813 crossref_primary_10_1108_JSBED_12_2016_0193 crossref_primary_10_2139_ssrn_2725320 crossref_primary_10_1007_s11424_012_8351_1 crossref_primary_10_1080_03610920802245758 crossref_primary_10_1080_02331888_2012_748778 crossref_primary_10_1016_j_econlet_2011_07_014 crossref_primary_10_1080_07474938_2016_1167813 crossref_primary_10_1007_s11424_007_9048_8 crossref_primary_10_1080_07474938_2019_1624403 crossref_primary_10_1080_0740817X_2016_1146423 crossref_primary_10_1080_03610918_2019_1649423 |
ContentType | Journal Article |
DBID | DKI X2L |
DOI | 10.1093/biomet/90.1.43 |
DatabaseName | RePEc IDEAS RePEc |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Biology |
EISSN | 1464-3510 |
EndPage | 52 |
ExternalDocumentID | oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm |
GroupedDBID | 02 08R 0R 1AW 1TH 23N 2P 3R3 4.4 482 48X 53G 55 5GY 5RE 5VS 5WA 6.Y 70D 79B 8U8 91 AABJS AABMN AAIJN AAIYJ AAJQQ AAMVS AANRK AAOGV AAPBV AAPQZ AAUQX ABBHK ABEUO ABFLS ABIXL ABPFR ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABYAD ACGFS ACGOD ACIWK ACNCT ACPRK ACTWD ACUFI ACUTJ ACYTK ADBIT ADEIU ADEZT ADGZP ADHKW ADHZD ADIPN ADODI ADORX ADQLU ADRIX ADRTK ADYVW ADZXQ AEGPL AEKKA AEKPW AEMDU AENEX AENZO AETBJ AEUPB AEWNT AFFZL AFIYH AFRAH AFXEN AFXHP AFXKK AGINJ AGKRT AGSYK AHGVY AHXPO AIHXQ AIKOY AJEUX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN AQDSO ARQIP AS ASAOO ASPBG ATDFG ATTQO AUCZF AVWKF AXUDD AZFZN AZQFJ AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN BYORX C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DKI DPORF DPPUQ DQDLB DSRWC DU5 DZ D~K E4 EBS ECEWR EE EFSUC EJD ELUNK ESX F5P F9B FEDTE FLIZI FQBLK FVMVE GAUVT GJ GJXCC H13 H5 HAR HGD HQ6 HVGLF HW0 HZ H~9 I3 IOX IPNFZ J21 JAS JMS JPL JSODD JST KAQDR KBUDW KC5 KOP KSI KSN M-Z M49 MBTAY ML0 MVM N9A NGC NMDNZ NTWIH NU- NVLIB O0 O9- ODMLO OJQWA OVD OWPYF O~Y P2P PAFKI PB- PEELM PQEST PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI RNS ROL ROX ROZ RW1 RXO RZF RZO SA0 TCN TEORI TJP TN5 UAP WH7 X X2L X7H X7M XFK XHC YAYTL YKOAZ YXANX ZCG ZGI ZKX |
ID | FETCH-LOGICAL-c459t-550aceedc1b50f0e1fd6907ce3331f0b814f89831f8b22ae5e66d045bf35ccaf2 |
IEDL.DBID | DKI |
ISSN | 0006-3444 |
IngestDate | Wed Aug 18 03:13:18 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-550aceedc1b50f0e1fd6907ce3331f0b814f89831f8b22ae5e66d045bf35ccaf2 |
OpenAccessLink | https://academic.oup.com/biomet/article-pdf/90/1/43/582364/900043.pdf |
PageCount | 10 |
ParticipantIDs | repec_primary_oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm |
PublicationCentury | 2000 |
PublicationDate | 2003-03-01 |
PublicationDateYYYYMMDD | 2003-03-01 |
PublicationDate_xml | – month: 03 year: 2003 text: 2003-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationSeriesTitle | Biometrika |
PublicationTitle | Biometrika |
PublicationYear | 2003 |
Publisher | Oxford University Press for Biometrika Trust |
Publisher_xml | – name: Oxford University Press for Biometrika Trust |
SSID | ssj0006656 |
Score | 2.1214497 |
Snippet | There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been... |
SourceID | repec |
SourceType | Index Database |
StartPage | 43 |
Title | Marginal nonparametric kernel regression accounting for within-subject correlation |
URI | http://econpapers.repec.org/article/oupbiomet/v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43-52.htm |
Volume | 90 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7DIewiOhV_k4PXbG1-2RyHOqaiB3GwW0myRIZay9yE_fe-15bizYuH16ZQmjSPJN8LX95HyCU4NfLUKyZwuEnjOLMqi8wCundeJrAEYqD4-KQnU3k_U7MOadMTQBBY2hKQz2AZytBkCq77cPi5Lqsz6avhdy6sSeCyAUN6FdwWYClYCSYFBFgQfH7A3CxMhlS_m4e7dobWulJ1xRITUso2maMYNhUYeBzgSZ5u1YxfS854l-w0WJGO6obtkU4o-mS7Vo_c9EkPgWKdZ3mfPKNiLSpc0QL_DSlXmHufvoVlEd7pMrzWhNeC2lYfggJgpbgRuyjY19rhjgz1qNZR8-MOyHR8-3I9YY1eAvNSmRWDYMPimudTp5KYhDTOMfb1QQiRxsRlqYyZyaCcOc5tUEHrOUA6F4UCR0Z-SLagjeGIUK-54WnIvLgSEl6zBnBQ0N4pBwgphmMyqjomL-ucGHnrm_xv3-SK5-Cbk3_4xinpVey6ihR2RroRxmw4B5iwcheVz38ANlK-jw |
linkProvider | Research Papers in Economics (RePEc) |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marginal+nonparametric+kernel+regression+accounting+for+within-subject+correlation&rft.jtitle=Biometrika&rft.au=Wang%2C+Naisyin&rft.series=Biometrika&rft.date=2003-03-01&rft.pub=Oxford+University+Press+for+Biometrika+Trust&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=90&rft.issue=1&rft.spage=43&rft.epage=52&rft_id=info:doi/10.1093%2Fbiomet%2F90.1.43&rft.externalDocID=oupbiomet_v_3a90_3ay_3a2003_3ai_3a1_3ap_3a43_52_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon |