Marginal nonparametric kernel regression accounting for within-subject correlation

There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming in...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 90; no. 1; pp. 43 - 52
Main Author Wang, Naisyin
Format Journal Article
LanguageEnglish
Published Oxford University Press for Biometrika Trust 01.03.2003
SeriesBiometrika
Online AccessGet more information

Cover

Loading…
More Information
Summary:There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/90.1.43