Exosomes from magnetic particles-primed mesenchymal stem cells enhance neural differentiation of PC12 cells

This study aimed to investigate the effects of mesenchymal stem cell exosomes loaded with Fe3O4 magnetic particles (Fe3O4@ MSC-exo) on the survival and neural differentiation of PC12 cells. Exosomes were separated from Fe3O4 magnetic nanoparticles-primed umbilical cord mesenchymal stem cells conditi...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 9; no. 10; p. e21075
Main Authors Xie, Yong, Wang, Xiaoyan, Wang, Zhonghui, Feng, Jianyang, Li, Dongsheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed to investigate the effects of mesenchymal stem cell exosomes loaded with Fe3O4 magnetic particles (Fe3O4@ MSC-exo) on the survival and neural differentiation of PC12 cells. Exosomes were separated from Fe3O4 magnetic nanoparticles-primed umbilical cord mesenchymal stem cells condition medium by ultracentrifugation and characterized by transmission electron microscopy, flow nano analysis, and western blotting. PC12 cells were treated with culture medium containing exosomes. The effects of Fe3O4@ MSC-exo on PC12 cell proliferation, migration, and neural differentiation were analyzed using CCK-8 assay, transwell migration assay, RT-qPCR, and immunofluorescence, respectively. Additionally, miRNA sequencing was performed on Fe3O4@ MSC-exo, followed by bioinformatic analysis of the results. We found that Fe3O4@ MSC-exo can promote PC12 cell proliferation, migration, and neural differentiation. According to the sequencing results, there were a total of 43 differentially expressed miRNAs. The present study indicated that Fe3O4@ MSC-exo might enhance nerve cell function, laying the foundation for targeted therapy of nerve injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e21075