Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer

Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple b...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 68; no. 3; pp. 890 - 897
Main Authors Tamura, Takayuki, Usui, Shuji, Murakami, Shigeru, Arihiro, Koji, Fujimoto, Takashi, Yamada, Tamaki, Naito, Kumiko, Akiyama, Mitoshi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.23277

Cover

Abstract Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b‐values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10−3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10−3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces.
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces.Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces.
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm super(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 10 super(-3) mm super(2)/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 10 super(-3) mm super(2)/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. [copy 2011 Wiley Periodicals, Inc.
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10-3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10-3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b ‐values up to 3500 s/mm 2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10 −3 mm 2 /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10 −3 mm 2 /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b‐values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10−3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10−3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.
Author Tamura, Takayuki
Usui, Shuji
Fujimoto, Takashi
Arihiro, Koji
Murakami, Shigeru
Naito, Kumiko
Yamada, Tamaki
Akiyama, Mitoshi
Author_xml – sequence: 1
  givenname: Takayuki
  surname: Tamura
  fullname: Tamura, Takayuki
  email: tamutaka@hicat.ne.jp
  organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan
– sequence: 2
  givenname: Shuji
  surname: Usui
  fullname: Usui, Shuji
  organization: Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
– sequence: 3
  givenname: Shigeru
  surname: Murakami
  fullname: Murakami, Shigeru
  organization: Department of Surgery, Hiroshima Asa City Hospital, Hiroshima, Japan
– sequence: 4
  givenname: Koji
  surname: Arihiro
  fullname: Arihiro, Koji
  organization: Department of Anatomical Pathology, Hiroshima University, Hiroshima, Japan
– sequence: 5
  givenname: Takashi
  surname: Fujimoto
  fullname: Fujimoto, Takashi
  organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan
– sequence: 6
  givenname: Tamaki
  surname: Yamada
  fullname: Yamada, Tamaki
  organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan
– sequence: 7
  givenname: Kumiko
  surname: Naito
  fullname: Naito, Kumiko
  organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan
– sequence: 8
  givenname: Mitoshi
  surname: Akiyama
  fullname: Akiyama, Mitoshi
  organization: Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22161802$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctu1DAUBmALFdFpYcELoEhs6CKt746XaIChUgsVF80GyXKck9YliVM7aZm3x2XaLioBG3txvv8szr-HdoYwAEIvCT4kGNOjPvaHlFGlnqAFEZSWVGi-gxZYcVwyovku2kvpEmOsteLP0C6lRJIK0wX6sQz9aKNPYUhFaIt-7iZf1OW17WYo3q2Pi-TPB9sVNj-b5FNx46eLYrTTRejCuXd5lEZwvofhNl9HsGkqnB0cxOfoaWu7BC_u_n30_cP7b8uP5cnn1fHy7UnpuNCqlFK5yjHMmKw1VRUH1lZc1c42sgFonbINYKYpaXVDGGiZx7ySINpWtFKzffRmu3eM4WqGNJneJwddZwcIczKEM44pE4L-n2ImKyWJwJm-fkQvwxzzGbJiggglKCdZvbpTc91DY8boexs35v7EGRxsgYshpQjtAyHY3NZncn3mT33ZHj2yzk928mGYovXdvxI3voPN31eb0y-n94lym_Bpgl8PCRt_GqmYEmb9aWW-ruQZPltjo9lv4j65EA
CODEN MRMEEN
CitedBy_id crossref_primary_10_1148_rycan_2019190008
crossref_primary_10_1158_1078_0432_CCR_20_2017
crossref_primary_10_1002_jmri_27018
crossref_primary_10_1007_s00261_014_0324_5
crossref_primary_10_1002_mrm_29090
crossref_primary_10_1007_s12194_022_00694_y
crossref_primary_10_1002_jmri_24386
crossref_primary_10_1007_s00330_016_4241_6
crossref_primary_10_1007_s00330_014_3146_5
crossref_primary_10_1259_bjr_20130807
crossref_primary_10_1259_bjr_20150614
crossref_primary_10_1371_journal_pone_0063869
crossref_primary_10_1016_j_acra_2018_05_011
crossref_primary_10_1186_1470_7330_14_11
crossref_primary_10_1097_MD_0000000000011902
crossref_primary_10_3233_BSI_150130
crossref_primary_10_3760_cma_j_issn_0366_6999_20132508
crossref_primary_10_1002_jmri_26533
crossref_primary_10_1007_s00330_014_3201_2
crossref_primary_10_1177_0284185116687171
crossref_primary_10_1002_nbm_3377
crossref_primary_10_1159_000447765
crossref_primary_10_1007_s00500_018_3412_6
crossref_primary_10_1002_jmri_29487
crossref_primary_10_1371_journal_pone_0129212
crossref_primary_10_1002_jmri_25086
crossref_primary_10_1002_jmri_27085
crossref_primary_10_2463_mrms_mp_2020_0103
Cites_doi 10.2463/mrms.9.195
10.1097/RLI.0b013e31804ffd49
10.2463/mrms.4.35
10.2463/mrms.6.147
10.2463/mrms.5.201
10.2463/mrms.4.175
10.2463/mrms.3.79
10.1002/mrm.1910370605
10.1063/1.1670306
10.1148/radiol.2461061298
10.1002/jmri.21030
10.1016/j.mri.2008.01.042
10.1097/00004728-200211000-00033
10.2463/mrms.7.23
10.1007/s00330-007-0621-2
10.1016/j.mri.2007.04.013
10.2214/AJR.08.2128
10.1002/mrm.1910360607
10.1002/mrm.10702
10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2
10.1016/B978-0-12-025512-2.50004-X
10.1016/j.mri.2008.06.003
10.2463/mrms.6.21
10.1148/radiol.2383042204
10.1016/j.mri.2005.12.008
10.2463/mrms.6.211
10.1002/jmri.20643
10.2214/AJR.08.1670
10.1102/1470-7330.2006.0021
10.1016/j.acra.2007.02.006
10.1002/mrm.1910330516
10.1002/jmri.21854
10.1002/jmri.10140
10.1002/jmri.10116
10.1137/0111030
10.1148/radiology.168.2.3393671
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.23277
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database
Biochemistry Abstracts 1
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 897
ExternalDocumentID 2971232711
22161802
10_1002_mrm_23277
MRM23277
ark_67375_WNG_SG6P0PW0_9
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4597-667c8c30336b92784e3f847bcad6deefc7ade03921f9d13e96f84486e5ff5f693
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 06:06:47 EDT 2025
Fri Jul 11 08:28:54 EDT 2025
Fri Jul 25 12:07:08 EDT 2025
Mon Jul 21 06:04:35 EDT 2025
Tue Jul 01 01:20:49 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Wed Jan 22 16:21:56 EST 2025
Wed Oct 30 09:48:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4597-667c8c30336b92784e3f847bcad6deefc7ade03921f9d13e96f84486e5ff5f693
Notes istex:2FF6E9E124646466EDB135E769D16BD6D33C83DB
ark:/67375/WNG-SG6P0PW0-9
ArticleID:MRM23277
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.23277
PMID 22161802
PQID 1351575241
PQPubID 1016391
PageCount 8
ParticipantIDs proquest_miscellaneous_1434023552
proquest_miscellaneous_1036876150
proquest_journals_1351575241
pubmed_primary_22161802
crossref_primary_10_1002_mrm_23277
crossref_citationtrail_10_1002_mrm_23277
wiley_primary_10_1002_mrm_23277_MRM23277
istex_primary_ark_67375_WNG_SG6P0PW0_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2012
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: September 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 1968; 49: 1768-1777.
Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW. In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 2002; 15: 693-704.
Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007; 17: 2646-2655.
Schwarcz A, Bogner P, Meric P, Correze JL, Berente Z, Pal J, Gallyas F, Doczi T, Gillet B, Beloeil JC. The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 2004; 51: 278-285.
Roth Y, Ocherashvilli A, Daniels D, Ruiz-Cabello J, Maier SE, Orenstein A, Mardor Y. Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 2008; 26: 88-102.
Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857.
Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697-712.
Tsushima Y, Takano A, Taketomi-Takahashi A, Endo K. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 2007; 14: 643-650.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Industr Appl Math 1963; 11: 431-441.
Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007; 6: 21-27.
Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904.
Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging 2006; 24: 563-568.
Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, Nawano S. Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 2004; 3: 79-85.
Tamura T, Usui S, Murakami S, Arihiro K, Akiyama Y, Naito K, Akiyama M. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 2010; 9: 195-207.
Nilsson M, Lätt J, Nordh E, Wirestam R, Ståhlberg F, Brockstedt S. On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 2009; 27: 176-187.
Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging 2007; 26: 529-540.
Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006; 6: 135-143.
Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumor using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007; 6: 211-224.
Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 2008; 246: 116-124.
Lichy MP, Aschoff P, Plathow C, Stemmer A, Horger W, Mueller-Horvat C, Steidle G, Horger M, Schafer J, Eschmann SM, Kiefer B, Claussen CD, Pfannenberg C, Schlemmer HP. Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT. Invest Radiol 2007; 42: 605-613.
Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging-initial experience. Radiology 2006; 239: 223-231.
Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002; 16: 172-178.
Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60.
Brugières P, Thomas P, Maraval A, Hosseini H, Combes C, Chafiq A, Ruel L, Breil S, Peschanski M, Gaston A. Water diffusion compartmentation at high b values in ischemic human brain. AJNR Am J Neuroradiol 2004; 25: 692-698.
Hori M, Kim T, Murakami T, Onishi H, Tsuboyama N, Osuga K, Tomoda K, Nakamura H, Hirano M, Nozaki A. Isotropic diffusion-weighted MR imaging with tetrahedral gradients in the upper abdomen. Magn Reson Med Sci 2006; 5: 201-206.
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505.
Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24: 319-324.
Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? AJR Am J Rentogenol 2009; 193: 840-849.
Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 2009; 30: 249-255.
Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M. Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 2002; 26: 1042-1046.
Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, Maeda N, Nakata S, Kuwabara M, Murakami T, Nakamura H. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007; 6: 147-155.
Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, Kuranami M, Watanabe M, Hayakawa K. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42.
Kärger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 1988; 12: 1-89.
Tamura T, Usui S, Akiyama M. Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments. Jpn J Magn Reson Med 2010; 30: 1-9.
Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Kanazawa H, Ishigaki T. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 2005; 4: 175-186.
Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, Mountford CE, Hatabu H. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 2009; 193: 260-266.
Pilatus U, Shim H, Artemov D, Davis D, van Zijl PC, Glickson JD. Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 1997; 37: 825-832.
Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H. Apparent diffusion coefficients of breast tumor: clinical application. Magn Reson Med Sci 2008; 7: 23-29.
2002; 16
2007; 17
2002; 15
1968; 49
2004; 25
1995; 33
2004; 3
1988; 168
2008; 7
1988; 12
2006; 5
2006; 6
2008; 246
1996; 36
2006; 239
2009; 27
2007; 14
1999; 9
2002; 26
2009; 30
2004; 51
1963; 11
2006; 24
2009; 193
1997; 37
2005; 4
2008; 26
2007; 6
2007; 42
2010; 30
2007; 26
2010; 9
e_1_2_6_31_2
e_1_2_6_30_2
Tamura T (e_1_2_6_36_2) 2010; 30
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
Brugières P (e_1_2_6_37_2) 2004; 25
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, Kuranami M, Watanabe M, Hayakawa K. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42.
– reference: Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging 2006; 24: 563-568.
– reference: Lichy MP, Aschoff P, Plathow C, Stemmer A, Horger W, Mueller-Horvat C, Steidle G, Horger M, Schafer J, Eschmann SM, Kiefer B, Claussen CD, Pfannenberg C, Schlemmer HP. Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT. Invest Radiol 2007; 42: 605-613.
– reference: Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging 2007; 26: 529-540.
– reference: Tsushima Y, Takano A, Taketomi-Takahashi A, Endo K. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 2007; 14: 643-650.
– reference: Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, Mountford CE, Hatabu H. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 2009; 193: 260-266.
– reference: Tamura T, Usui S, Murakami S, Arihiro K, Akiyama Y, Naito K, Akiyama M. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 2010; 9: 195-207.
– reference: Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60.
– reference: Brugières P, Thomas P, Maraval A, Hosseini H, Combes C, Chafiq A, Ruel L, Breil S, Peschanski M, Gaston A. Water diffusion compartmentation at high b values in ischemic human brain. AJNR Am J Neuroradiol 2004; 25: 692-698.
– reference: Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Kanazawa H, Ishigaki T. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 2005; 4: 175-186.
– reference: Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW. In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 2002; 15: 693-704.
– reference: Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007; 17: 2646-2655.
– reference: Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857.
– reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Industr Appl Math 1963; 11: 431-441.
– reference: Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H. Apparent diffusion coefficients of breast tumor: clinical application. Magn Reson Med Sci 2008; 7: 23-29.
– reference: Hori M, Kim T, Murakami T, Onishi H, Tsuboyama N, Osuga K, Tomoda K, Nakamura H, Hirano M, Nozaki A. Isotropic diffusion-weighted MR imaging with tetrahedral gradients in the upper abdomen. Magn Reson Med Sci 2006; 5: 201-206.
– reference: Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, Nawano S. Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 2004; 3: 79-85.
– reference: Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904.
– reference: Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505.
– reference: Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006; 6: 135-143.
– reference: Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging-initial experience. Radiology 2006; 239: 223-231.
– reference: Nilsson M, Lätt J, Nordh E, Wirestam R, Ståhlberg F, Brockstedt S. On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 2009; 27: 176-187.
– reference: Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M. Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 2002; 26: 1042-1046.
– reference: Roth Y, Ocherashvilli A, Daniels D, Ruiz-Cabello J, Maier SE, Orenstein A, Mardor Y. Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 2008; 26: 88-102.
– reference: Tamura T, Usui S, Akiyama M. Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments. Jpn J Magn Reson Med 2010; 30: 1-9.
– reference: Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 2008; 246: 116-124.
– reference: Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumor using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007; 6: 211-224.
– reference: Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, Maeda N, Nakata S, Kuwabara M, Murakami T, Nakamura H. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007; 6: 147-155.
– reference: Schwarcz A, Bogner P, Meric P, Correze JL, Berente Z, Pal J, Gallyas F, Doczi T, Gillet B, Beloeil JC. The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 2004; 51: 278-285.
– reference: Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 2009; 30: 249-255.
– reference: Pilatus U, Shim H, Artemov D, Davis D, van Zijl PC, Glickson JD. Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 1997; 37: 825-832.
– reference: Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? AJR Am J Rentogenol 2009; 193: 840-849.
– reference: Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697-712.
– reference: Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002; 16: 172-178.
– reference: Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007; 6: 21-27.
– reference: Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 1968; 49: 1768-1777.
– reference: Kärger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 1988; 12: 1-89.
– reference: Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24: 319-324.
– volume: 24
  start-page: 319
  year: 2006
  end-page: 324
  article-title: Quantitative diffusion imaging in breast cancer: a clinical prospective study
  publication-title: J Magn Reson Imaging
– volume: 168
  start-page: 497
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 12
  start-page: 1
  year: 1988
  end-page: 89
  article-title: Principles and applications of self‐diffusion measurements by nuclear magnetic resonance
  publication-title: Adv Magn Reson
– volume: 239
  start-page: 223
  year: 2006
  end-page: 231
  article-title: Pituitary macroadenomas: preoperative evaluation of consistency with diffusion‐weighted MR imaging—initial experience
  publication-title: Radiology
– volume: 193
  start-page: 840
  year: 2009
  end-page: 849
  article-title: H MR spectroscopy and diffusion‐weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy?
  publication-title: AJR Am J Rentogenol
– volume: 49
  start-page: 1768
  year: 1968
  end-page: 1777
  article-title: Restricted self‐diffusion of protons in colloidal systems by the pulsed‐gradient, spin‐echo method
  publication-title: J Chem Phys
– volume: 14
  start-page: 643
  year: 2007
  end-page: 650
  article-title: Body diffusion‐weighted MR imaging using high b‐value for malignant tumor screening: usefulness and necessity of referring to T2‐weighted images and creating fusion images
  publication-title: Acad Radiol
– volume: 7
  start-page: 23
  year: 2008
  end-page: 29
  article-title: Apparent diffusion coefficients of breast tumor: clinical application
  publication-title: Magn Reson Med Sci
– volume: 51
  start-page: 278
  year: 2004
  end-page: 285
  article-title: The existence of biexponential signal decay in magnetic resonance diffusion‐weighted imaging appears to be independent of compartmentalization
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1042
  year: 2002
  end-page: 1046
  article-title: Diffusion‐weighted half‐Fourier single‐shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma
  publication-title: J Comput Assist Tomogr
– volume: 3
  start-page: 79
  year: 2004
  end-page: 85
  article-title: Diffusion‐weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value
  publication-title: Magn Reson Med Sci
– volume: 33
  start-page: 697
  year: 1995
  end-page: 712
  article-title: Theoretical model for water diffusion in tissues
  publication-title: Magn Reson Med
– volume: 26
  start-page: 88
  year: 2008
  end-page: 102
  article-title: Quantification of water compartmentation in cell suspensions by diffusion‐weighted and T ‐weighted MRI
  publication-title: Magn Reson Imaging
– volume: 4
  start-page: 35
  year: 2005
  end-page: 42
  article-title: ADC mapping of benign and malignant breast tumors
  publication-title: Magn Reson Med Sci
– volume: 26
  start-page: 529
  year: 2007
  end-page: 540
  article-title: Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion‐weighted MRI
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 176
  year: 2009
  end-page: 187
  article-title: On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted?
  publication-title: Magn Reson Imaging
– volume: 15
  start-page: 693
  year: 2002
  end-page: 704
  article-title: In vivo diffusion‐weighted MRI of the breast: potential for lesion characterization
  publication-title: J Magn Reson Imaging
– volume: 17
  start-page: 2646
  year: 2007
  end-page: 2655
  article-title: Quantitative diffusion‐weighted MR imaging in the differential diagnosis of breast lesion
  publication-title: Eur Radiol
– volume: 4
  start-page: 175
  year: 2005
  end-page: 186
  article-title: Diffusion‐weighted imaging of the liver: technical challenges and prospects for the future
  publication-title: Magn Reson Med Sci
– volume: 9
  start-page: 195
  year: 2010
  end-page: 207
  article-title: Biexponential signal attenuation analysis of diffusion‐weighted imaging of breast
  publication-title: Magn Reson Med Sci
– volume: 25
  start-page: 692
  year: 2004
  end-page: 698
  article-title: Water diffusion compartmentation at high values in ischemic human brain
  publication-title: AJNR Am J Neuroradiol
– volume: 6
  start-page: 211
  year: 2007
  end-page: 224
  article-title: Practical aspects of assessing tumor using clinical diffusion‐weighted imaging in the body
  publication-title: Magn Reson Med Sci
– volume: 6
  start-page: 147
  year: 2007
  end-page: 155
  article-title: Whole‐body MRI for detecting metastatic bone tumor: diagnostic value of diffusion‐weighted images
  publication-title: Magn Reson Med Sci
– volume: 37
  start-page: 825
  year: 1997
  end-page: 832
  article-title: Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR
  publication-title: Magn Reson Med
– volume: 5
  start-page: 201
  year: 2006
  end-page: 206
  article-title: Isotropic diffusion‐weighted MR imaging with tetrahedral gradients in the upper abdomen
  publication-title: Magn Reson Med Sci
– volume: 246
  start-page: 116
  year: 2008
  end-page: 124
  article-title: Meta‐analysis of MR imaging in the diagnosis of breast lesions
  publication-title: Radiology
– volume: 16
  start-page: 172
  year: 2002
  end-page: 178
  article-title: Differentiation of clinically benign and malignant breast lesions using diffusion‐weighted imaging
  publication-title: J Magn Reson Imaging
– volume: 30
  start-page: 1
  year: 2010
  end-page: 9
  article-title: Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments
  publication-title: Jpn J Magn Reson Med
– volume: 36
  start-page: 847
  year: 1996
  end-page: 857
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion‐weighted imaging
  publication-title: Magn Reson Med
– volume: 6
  start-page: 135
  year: 2006
  end-page: 143
  article-title: Diffusion‐weighted magnetic resonance imaging and its application to cancer
  publication-title: Cancer Imaging
– volume: 30
  start-page: 249
  year: 2009
  end-page: 255
  article-title: Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5‐T
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 897
  year: 2008
  end-page: 904
  article-title: Biexponential analysis of diffusion‐related signal decay in normal human cortical and deep gray matter
  publication-title: Magn Reson Imaging
– volume: 6
  start-page: 21
  year: 2007
  end-page: 27
  article-title: Detecting breast cancer with non‐contrast MR imaging: combining diffusion‐weighted and STIR imaging
  publication-title: Magn Reson Med Sci
– volume: 193
  start-page: 260
  year: 2009
  end-page: 266
  article-title: Diffusion‐weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings
  publication-title: AJR Am J Roentgenol
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimation of nonlinear parameters
  publication-title: J Soc Industr Appl Math
– volume: 42
  start-page: 605
  year: 2007
  end-page: 613
  article-title: Tumor detection by diffusion‐weighted MRI and ADC‐mapping—initial clinical experiences in comparison to PET‐CT
  publication-title: Invest Radiol
– volume: 9
  start-page: 53
  year: 1999
  end-page: 60
  article-title: Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 563
  year: 2006
  end-page: 568
  article-title: Biexponential characterization of prostate tissue water diffusion decay curves over an extended ‐factor range
  publication-title: Magn Reson Imaging
– volume: 25
  start-page: 692
  year: 2004
  ident: e_1_2_6_37_2
  article-title: Water diffusion compartmentation at high b values in ischemic human brain
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_32_2
  doi: 10.2463/mrms.9.195
– ident: e_1_2_6_6_2
  doi: 10.1097/RLI.0b013e31804ffd49
– ident: e_1_2_6_12_2
  doi: 10.2463/mrms.4.35
– ident: e_1_2_6_5_2
  doi: 10.2463/mrms.6.147
– ident: e_1_2_6_33_2
  doi: 10.2463/mrms.5.201
– ident: e_1_2_6_4_2
  doi: 10.2463/mrms.4.175
– ident: e_1_2_6_11_2
  doi: 10.2463/mrms.3.79
– ident: e_1_2_6_26_2
  doi: 10.1002/mrm.1910370605
– ident: e_1_2_6_23_2
  doi: 10.1063/1.1670306
– ident: e_1_2_6_17_2
  doi: 10.1148/radiol.2461061298
– ident: e_1_2_6_30_2
  doi: 10.1002/jmri.21030
– ident: e_1_2_6_38_2
  doi: 10.1016/j.mri.2008.01.042
– ident: e_1_2_6_10_2
  doi: 10.1097/00004728-200211000-00033
– ident: e_1_2_6_16_2
  doi: 10.2463/mrms.7.23
– ident: e_1_2_6_14_2
  doi: 10.1007/s00330-007-0621-2
– ident: e_1_2_6_31_2
  doi: 10.1016/j.mri.2007.04.013
– ident: e_1_2_6_19_2
  doi: 10.2214/AJR.08.2128
– ident: e_1_2_6_25_2
  doi: 10.1002/mrm.1910360607
– ident: e_1_2_6_27_2
  doi: 10.1002/mrm.10702
– ident: e_1_2_6_21_2
  doi: 10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2
– ident: e_1_2_6_24_2
  doi: 10.1016/B978-0-12-025512-2.50004-X
– ident: e_1_2_6_28_2
  doi: 10.1016/j.mri.2008.06.003
– ident: e_1_2_6_15_2
  doi: 10.2463/mrms.6.21
– ident: e_1_2_6_22_2
  doi: 10.1148/radiol.2383042204
– ident: e_1_2_6_39_2
  doi: 10.1016/j.mri.2005.12.008
– ident: e_1_2_6_3_2
  doi: 10.2463/mrms.6.211
– ident: e_1_2_6_13_2
  doi: 10.1002/jmri.20643
– ident: e_1_2_6_18_2
  doi: 10.2214/AJR.08.1670
– volume: 30
  start-page: 1
  year: 2010
  ident: e_1_2_6_36_2
  article-title: Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments
  publication-title: Jpn J Magn Reson Med
– ident: e_1_2_6_2_2
  doi: 10.1102/1470-7330.2006.0021
– ident: e_1_2_6_7_2
  doi: 10.1016/j.acra.2007.02.006
– ident: e_1_2_6_29_2
  doi: 10.1002/mrm.1910330516
– ident: e_1_2_6_20_2
  doi: 10.1002/jmri.21854
– ident: e_1_2_6_8_2
  doi: 10.1002/jmri.10140
– ident: e_1_2_6_9_2
  doi: 10.1002/jmri.10116
– ident: e_1_2_6_34_2
  doi: 10.1137/0111030
– ident: e_1_2_6_35_2
  doi: 10.1148/radiology.168.2.3393671
SSID ssj0009974
Score 2.2291145
Snippet Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential...
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 890
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
apparent diffusion coefficient
biexponential signal attenuation
breast cancer
Breast Neoplasms - pathology
component fraction
Diffusion Magnetic Resonance Imaging - methods
diffusion weighted imaging
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Male
Middle Aged
Reproducibility of Results
Sensitivity and Specificity
Title Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer
URI https://api.istex.fr/ark:/67375/WNG-SG6P0PW0-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23277
https://www.ncbi.nlm.nih.gov/pubmed/22161802
https://www.proquest.com/docview/1351575241
https://www.proquest.com/docview/1036876150
https://www.proquest.com/docview/1434023552
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuFAqUlIIMQqiXbJPYcWJxQi1tQdqqKlTbA8KKHftSuov2R0I99RF4xj5JZ5yfqqggxC2SJ5Zjz3i-2DPfALwpCPWiq4tzbm0suM1jZRITpyKtfC1LmZSU4Dw8kPvH4tNJfrIE77pcmIYfoj9wI8sI-zUZeGVmW9ekoWfTswHCgYIyyVMuiTd_5-iaOkqphoG5ELTPKNGxCiXZVv_mDV90h6b1521A8yZuDY5ndwW-dkNu4k1OB4u5Gdjz39gc__ObHsKDFpCy940GPYIlN16Fe8P2yn0V7oYYUTt7DN-2-5qFMzbxLMQiMnN58YsYwx3bGX1kFA6CvVUt1QmjY15GVY-7PZZRaidVFKAeDEXEz5klzZs-gePdD1-29-O2PENsBf6GxFIWtrToArk0iu4vHffo64ytalk7521R1S5B_JV6VafcKYnNopQu9z73UvGnsDyejN0zYNZZUQteV1lSCl9mJrGF8s7lOfZTCRvBZrdQ2rbc5VRC47tuWJczjTOnw8xF8LoX_dEQdtwm9Dasdi9RTU8pwq3I9ehgT3_ek4fJ4SjRKoKNTh10a9wzTUUNEeUi9ongVd-MZkl3LdXYTRYog8gAHQ3C7b_ICC6IbijPIlhrVK0fUJZRJYMEWzaDwvz5W_TwaBge1v9d9DncR-CXNbFyG7A8ny7cCwRXc_MyWNEVKaUfwQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlAuPAqUQAGDEOol22xiO7HEBbW0W2hWVWm1vYCVOPaldBftQ0Kc-An8Rn4JM86jKioIcYvkieXHjOezPf4G4GVKqBddXSgSY0KeGBGqMirDPu8XrpKZjDJ64JwP5eCEvzsVp0vwun0LU_NDdAduZBl-vSYDpwPprQvW0PPpeQ_xQJpegxWOQIO2XjtHF-RRStUczCmnlUbxllcoire6Xy95oxUa2K9XQc3LyNW7nt3b8LFtdB1xctZbzMue-fYbn-P_9uoO3GowKXtTK9FdWLLjNbiRN7fua3Ddh4ma2T34tN2lLZyxiWM-HJGVP7__INJwy3ZG-4wiQrC2omE7YXTSyyjxcbvMMnrdSUkFqIaSguLnzJDyTe_Dye7b4-1B2GRoCA3HnUgoZWoyg14wkaWiK0ybOHR3pSkqWVnrTFpUNkII1neq6idWSSzmmbTCOeGkSh7A8ngytg-BGWt4xZOqiKOMuywuI5MqZ60QWE_BTQCb7Uxp09CXUxaNz7omXo41jpz2IxfAi070S83ZcZXQKz_dnUQxPaMgt1To0XBPf9iTh9HhKNIqgI1WH3Rj3zNNeQ0R6CL8CeB5V4yWSdctxdhOFiiD4AB9DSLuv8jwhBPjkIgDWK91rWtQHFMygwhLNr3G_LkvOj_K_cejfxd9BquD4_xAH-wP3z-Gm4gD4zp0bgOW59OFfYJYa14-9Sb1CxdiI-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXaAGDEOolW2_iOLE4oZZtC-xqVai2hworcexL6W61Dwlx6k_gN_aXdMZ5VEUFIW6RPLH8mPF8tsffALxJCfWiqwuT2JhQxCYJVcGLsCu6uStlJnlGD5z7A7l3KD4eJUdL8K55C1PxQ7QHbmQZfr0mAz8r3dYVaejp9LSDcCBNb8GKwCr9furgijtKqYqCORW00CjR0ArxaKv99ZozWqFx_XET0rwOXL3n6d2D46bNVcDJSWcxLzrm5290jv_Zqftwt0ak7H2lQg9gyY7XYLVf37mvwW0fJGpmD-Hbdpu0cMYmjvlgRFZcnP8iynDLdkb7jOJBsLa85jphdM7LKO1xs8gyettJKQWohoJC4ufMkOpNH8Fh78PX7b2wzs8QGoH7kFDK1GQGfWAsC0UXmDZ26OwKk5eytNaZNC8tRwDWdarsxlZJLBaZtIlziZMqfgzL48nYPgVmrBGliMs84plwWVRwkypnbZJgPbkwAWw2E6VNTV5OOTS-64p2OdI4ctqPXACvW9GzirHjJqG3frZbiXx6QiFuaaJHg139ZVcO-XDEtQpgo1EHXVv3TFNWQ4S5CH4CeNUWo13SZUs-tpMFyiA0QE-DePsvMiIWxDeURAE8qVStbVAUUSoDjiWbXmH-3BfdP-j7j2f_LvoSVoc7Pf15f_BpHe4gCIyquLkNWJ5PF_Y5Aq158cIb1CWUqyKP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+multi+b-value+DWI+signal+analysis+with+pathological+specimen+of+breast+cancer&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tamura%2C+Takayuki&rft.au=Usui%2C+Shuji&rft.au=Murakami%2C+Shigeru&rft.au=Arihiro%2C+Koji&rft.date=2012-09-01&rft.eissn=1522-2594&rft.volume=68&rft.issue=3&rft.spage=890&rft_id=info:doi/10.1002%2Fmrm.23277&rft_id=info%3Apmid%2F22161802&rft.externalDocID=22161802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon