Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer
Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple b...
Saved in:
Published in | Magnetic resonance in medicine Vol. 68; no. 3; pp. 890 - 897 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.23277 |
Cover
Abstract | Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b‐values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10−3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10−3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces.Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10(-3) mm(2) /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10(-3) mm(2) /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm super(2) and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 10 super(-3) mm super(2)/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 10 super(-3) mm super(2)/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. [copy 2011 Wiley Periodicals, Inc. Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non-monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra- and intracellular component information obtained from the pathological specimens. Twenty-two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b-values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2-0.3 × 10-3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10-3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b ‐values up to 3500 s/mm 2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10 −3 mm 2 /s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10 −3 mm 2 /s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential biexponential decay, and the apparent diffusion coefficients (ADCs) can be divided into a fast and slow diffusion component by using a simple biexponential decay model. The purpose of this study is to examine the non‐monoexponential character of the diffusion weighted magnetic resonance imaging signal attenuations of breast cancers, estimate the fast and slow diffusion components, and compare them with the extra‐ and intracellular component information obtained from the pathological specimens. Twenty‐two subjects having breast cancers underwent diffusion weighted magnetic resonance imaging using six b‐values up to 3500 s/mm2 and the signal attenuations were analyzed using the biexponential function. The derived slow component fraction correlated with the cellular fraction and the ADCs converged to 0.2−0.3 × 10−3 mm2/s for the higher cellular fractions. The ADCs of the fast component ranged from 1.3 to 3.9 × 10−3 mm2/s and showed no correlation with the extracellular components. This result suggests that the main reason for the decreasing ADC of a breast tumor is the decreasing fraction of the fast component and the increasing fraction of the slow component having a low ADC rather than the decreasing ADC of the fast component by the restricted water diffusion in the reduced extracellular spaces. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc. |
Author | Tamura, Takayuki Usui, Shuji Fujimoto, Takashi Arihiro, Koji Murakami, Shigeru Naito, Kumiko Yamada, Tamaki Akiyama, Mitoshi |
Author_xml | – sequence: 1 givenname: Takayuki surname: Tamura fullname: Tamura, Takayuki email: tamutaka@hicat.ne.jp organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan – sequence: 2 givenname: Shuji surname: Usui fullname: Usui, Shuji organization: Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan – sequence: 3 givenname: Shigeru surname: Murakami fullname: Murakami, Shigeru organization: Department of Surgery, Hiroshima Asa City Hospital, Hiroshima, Japan – sequence: 4 givenname: Koji surname: Arihiro fullname: Arihiro, Koji organization: Department of Anatomical Pathology, Hiroshima University, Hiroshima, Japan – sequence: 5 givenname: Takashi surname: Fujimoto fullname: Fujimoto, Takashi organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan – sequence: 6 givenname: Tamaki surname: Yamada fullname: Yamada, Tamaki organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan – sequence: 7 givenname: Kumiko surname: Naito fullname: Naito, Kumiko organization: Department of Radiology, Hiroshima Atomic Bomb Casualty Council, Health Management & Promotion Center, Hiroshima, Japan – sequence: 8 givenname: Mitoshi surname: Akiyama fullname: Akiyama, Mitoshi organization: Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22161802$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctu1DAUBmALFdFpYcELoEhs6CKt746XaIChUgsVF80GyXKck9YliVM7aZm3x2XaLioBG3txvv8szr-HdoYwAEIvCT4kGNOjPvaHlFGlnqAFEZSWVGi-gxZYcVwyovku2kvpEmOsteLP0C6lRJIK0wX6sQz9aKNPYUhFaIt-7iZf1OW17WYo3q2Pi-TPB9sVNj-b5FNx46eLYrTTRejCuXd5lEZwvofhNl9HsGkqnB0cxOfoaWu7BC_u_n30_cP7b8uP5cnn1fHy7UnpuNCqlFK5yjHMmKw1VRUH1lZc1c42sgFonbINYKYpaXVDGGiZx7ySINpWtFKzffRmu3eM4WqGNJneJwddZwcIczKEM44pE4L-n2ImKyWJwJm-fkQvwxzzGbJiggglKCdZvbpTc91DY8boexs35v7EGRxsgYshpQjtAyHY3NZncn3mT33ZHj2yzk928mGYovXdvxI3voPN31eb0y-n94lym_Bpgl8PCRt_GqmYEmb9aWW-ruQZPltjo9lv4j65EA |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1148_rycan_2019190008 crossref_primary_10_1158_1078_0432_CCR_20_2017 crossref_primary_10_1002_jmri_27018 crossref_primary_10_1007_s00261_014_0324_5 crossref_primary_10_1002_mrm_29090 crossref_primary_10_1007_s12194_022_00694_y crossref_primary_10_1002_jmri_24386 crossref_primary_10_1007_s00330_016_4241_6 crossref_primary_10_1007_s00330_014_3146_5 crossref_primary_10_1259_bjr_20130807 crossref_primary_10_1259_bjr_20150614 crossref_primary_10_1371_journal_pone_0063869 crossref_primary_10_1016_j_acra_2018_05_011 crossref_primary_10_1186_1470_7330_14_11 crossref_primary_10_1097_MD_0000000000011902 crossref_primary_10_3233_BSI_150130 crossref_primary_10_3760_cma_j_issn_0366_6999_20132508 crossref_primary_10_1002_jmri_26533 crossref_primary_10_1007_s00330_014_3201_2 crossref_primary_10_1177_0284185116687171 crossref_primary_10_1002_nbm_3377 crossref_primary_10_1159_000447765 crossref_primary_10_1007_s00500_018_3412_6 crossref_primary_10_1002_jmri_29487 crossref_primary_10_1371_journal_pone_0129212 crossref_primary_10_1002_jmri_25086 crossref_primary_10_1002_jmri_27085 crossref_primary_10_2463_mrms_mp_2020_0103 |
Cites_doi | 10.2463/mrms.9.195 10.1097/RLI.0b013e31804ffd49 10.2463/mrms.4.35 10.2463/mrms.6.147 10.2463/mrms.5.201 10.2463/mrms.4.175 10.2463/mrms.3.79 10.1002/mrm.1910370605 10.1063/1.1670306 10.1148/radiol.2461061298 10.1002/jmri.21030 10.1016/j.mri.2008.01.042 10.1097/00004728-200211000-00033 10.2463/mrms.7.23 10.1007/s00330-007-0621-2 10.1016/j.mri.2007.04.013 10.2214/AJR.08.2128 10.1002/mrm.1910360607 10.1002/mrm.10702 10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2 10.1016/B978-0-12-025512-2.50004-X 10.1016/j.mri.2008.06.003 10.2463/mrms.6.21 10.1148/radiol.2383042204 10.1016/j.mri.2005.12.008 10.2463/mrms.6.211 10.1002/jmri.20643 10.2214/AJR.08.1670 10.1102/1470-7330.2006.0021 10.1016/j.acra.2007.02.006 10.1002/mrm.1910330516 10.1002/jmri.21854 10.1002/jmri.10140 10.1002/jmri.10116 10.1137/0111030 10.1148/radiology.168.2.3393671 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.23277 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Biochemistry Abstracts 1 CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 897 |
ExternalDocumentID | 2971232711 22161802 10_1002_mrm_23277 MRM23277 ark_67375_WNG_SG6P0PW0_9 |
Genre | article Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4597-667c8c30336b92784e3f847bcad6deefc7ade03921f9d13e96f84486e5ff5f693 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 06:06:47 EDT 2025 Fri Jul 11 08:28:54 EDT 2025 Fri Jul 25 12:07:08 EDT 2025 Mon Jul 21 06:04:35 EDT 2025 Tue Jul 01 01:20:49 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Wed Jan 22 16:21:56 EST 2025 Wed Oct 30 09:48:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4597-667c8c30336b92784e3f847bcad6deefc7ade03921f9d13e96f84486e5ff5f693 |
Notes | istex:2FF6E9E124646466EDB135E769D16BD6D33C83DB ark:/67375/WNG-SG6P0PW0-9 ArticleID:MRM23277 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.23277 |
PMID | 22161802 |
PQID | 1351575241 |
PQPubID | 1016391 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1434023552 proquest_miscellaneous_1036876150 proquest_journals_1351575241 pubmed_primary_22161802 crossref_primary_10_1002_mrm_23277 crossref_citationtrail_10_1002_mrm_23277 wiley_primary_10_1002_mrm_23277_MRM23277 istex_primary_ark_67375_WNG_SG6P0PW0_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2012 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: September 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 1968; 49: 1768-1777. Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW. In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 2002; 15: 693-704. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007; 17: 2646-2655. Schwarcz A, Bogner P, Meric P, Correze JL, Berente Z, Pal J, Gallyas F, Doczi T, Gillet B, Beloeil JC. The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 2004; 51: 278-285. Roth Y, Ocherashvilli A, Daniels D, Ruiz-Cabello J, Maier SE, Orenstein A, Mardor Y. Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 2008; 26: 88-102. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857. Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697-712. Tsushima Y, Takano A, Taketomi-Takahashi A, Endo K. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 2007; 14: 643-650. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Industr Appl Math 1963; 11: 431-441. Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007; 6: 21-27. Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904. Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging 2006; 24: 563-568. Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, Nawano S. Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 2004; 3: 79-85. Tamura T, Usui S, Murakami S, Arihiro K, Akiyama Y, Naito K, Akiyama M. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 2010; 9: 195-207. Nilsson M, Lätt J, Nordh E, Wirestam R, Ståhlberg F, Brockstedt S. On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 2009; 27: 176-187. Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging 2007; 26: 529-540. Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006; 6: 135-143. Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumor using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007; 6: 211-224. Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 2008; 246: 116-124. Lichy MP, Aschoff P, Plathow C, Stemmer A, Horger W, Mueller-Horvat C, Steidle G, Horger M, Schafer J, Eschmann SM, Kiefer B, Claussen CD, Pfannenberg C, Schlemmer HP. Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT. Invest Radiol 2007; 42: 605-613. Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging-initial experience. Radiology 2006; 239: 223-231. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002; 16: 172-178. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60. Brugières P, Thomas P, Maraval A, Hosseini H, Combes C, Chafiq A, Ruel L, Breil S, Peschanski M, Gaston A. Water diffusion compartmentation at high b values in ischemic human brain. AJNR Am J Neuroradiol 2004; 25: 692-698. Hori M, Kim T, Murakami T, Onishi H, Tsuboyama N, Osuga K, Tomoda K, Nakamura H, Hirano M, Nozaki A. Isotropic diffusion-weighted MR imaging with tetrahedral gradients in the upper abdomen. Magn Reson Med Sci 2006; 5: 201-206. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505. Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24: 319-324. Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? AJR Am J Rentogenol 2009; 193: 840-849. Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 2009; 30: 249-255. Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M. Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 2002; 26: 1042-1046. Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, Maeda N, Nakata S, Kuwabara M, Murakami T, Nakamura H. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007; 6: 147-155. Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, Kuranami M, Watanabe M, Hayakawa K. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42. Kärger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 1988; 12: 1-89. Tamura T, Usui S, Akiyama M. Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments. Jpn J Magn Reson Med 2010; 30: 1-9. Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Kanazawa H, Ishigaki T. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 2005; 4: 175-186. Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, Mountford CE, Hatabu H. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 2009; 193: 260-266. Pilatus U, Shim H, Artemov D, Davis D, van Zijl PC, Glickson JD. Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 1997; 37: 825-832. Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H. Apparent diffusion coefficients of breast tumor: clinical application. Magn Reson Med Sci 2008; 7: 23-29. 2002; 16 2007; 17 2002; 15 1968; 49 2004; 25 1995; 33 2004; 3 1988; 168 2008; 7 1988; 12 2006; 5 2006; 6 2008; 246 1996; 36 2006; 239 2009; 27 2007; 14 1999; 9 2002; 26 2009; 30 2004; 51 1963; 11 2006; 24 2009; 193 1997; 37 2005; 4 2008; 26 2007; 6 2007; 42 2010; 30 2007; 26 2010; 9 e_1_2_6_31_2 e_1_2_6_30_2 Tamura T (e_1_2_6_36_2) 2010; 30 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 Brugières P (e_1_2_6_37_2) 2004; 25 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, Kuranami M, Watanabe M, Hayakawa K. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005; 4: 35-42. – reference: Mulkern RV, Barnes AS, Haker SJ, Hung YP, Rybicki FJ, Maier SE, Tempany CM. Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. Magn Reson Imaging 2006; 24: 563-568. – reference: Lichy MP, Aschoff P, Plathow C, Stemmer A, Horger W, Mueller-Horvat C, Steidle G, Horger M, Schafer J, Eschmann SM, Kiefer B, Claussen CD, Pfannenberg C, Schlemmer HP. Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT. Invest Radiol 2007; 42: 605-613. – reference: Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging 2007; 26: 529-540. – reference: Tsushima Y, Takano A, Taketomi-Takahashi A, Endo K. Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 2007; 14: 643-650. – reference: Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, Mountford CE, Hatabu H. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 2009; 193: 260-266. – reference: Tamura T, Usui S, Murakami S, Arihiro K, Akiyama Y, Naito K, Akiyama M. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci 2010; 9: 195-207. – reference: Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53-60. – reference: Brugières P, Thomas P, Maraval A, Hosseini H, Combes C, Chafiq A, Ruel L, Breil S, Peschanski M, Gaston A. Water diffusion compartmentation at high b values in ischemic human brain. AJNR Am J Neuroradiol 2004; 25: 692-698. – reference: Naganawa S, Kawai H, Fukatsu H, Sakurai Y, Aoki I, Miura S, Kanazawa H, Ishigaki T. Diffusion-weighted imaging of the liver: technical challenges and prospects for the future. Magn Reson Med Sci 2005; 4: 175-186. – reference: Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW. In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 2002; 15: 693-704. – reference: Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 2007; 17: 2646-2655. – reference: Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857. – reference: Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Industr Appl Math 1963; 11: 431-441. – reference: Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani T, Oda Y, Tsuneyoshi M, Honda H. Apparent diffusion coefficients of breast tumor: clinical application. Magn Reson Med Sci 2008; 7: 23-29. – reference: Hori M, Kim T, Murakami T, Onishi H, Tsuboyama N, Osuga K, Tomoda K, Nakamura H, Hirano M, Nozaki A. Isotropic diffusion-weighted MR imaging with tetrahedral gradients in the upper abdomen. Magn Reson Med Sci 2006; 5: 201-206. – reference: Kuroki Y, Nasu K, Kuroki S, Murakami K, Hayashi T, Sekiguchi R, Nawano S. Diffusion-weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value. Magn Reson Med Sci 2004; 3: 79-85. – reference: Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904. – reference: Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505. – reference: Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006; 6: 135-143. – reference: Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging-initial experience. Radiology 2006; 239: 223-231. – reference: Nilsson M, Lätt J, Nordh E, Wirestam R, Ståhlberg F, Brockstedt S. On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 2009; 27: 176-187. – reference: Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M. Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 2002; 26: 1042-1046. – reference: Roth Y, Ocherashvilli A, Daniels D, Ruiz-Cabello J, Maier SE, Orenstein A, Mardor Y. Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 2008; 26: 88-102. – reference: Tamura T, Usui S, Akiyama M. Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments. Jpn J Magn Reson Med 2010; 30: 1-9. – reference: Peters NH, Borel Rinkes IH, Zuithoff NP, Mali WP, Moons KG, Peeters PH. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 2008; 246: 116-124. – reference: Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumor using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 2007; 6: 211-224. – reference: Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, Maeda N, Nakata S, Kuwabara M, Murakami T, Nakamura H. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007; 6: 147-155. – reference: Schwarcz A, Bogner P, Meric P, Correze JL, Berente Z, Pal J, Gallyas F, Doczi T, Gillet B, Beloeil JC. The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 2004; 51: 278-285. – reference: Tsushima Y, Takahashi-Taketomi A, Endo K. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. J Magn Reson Imaging 2009; 30: 249-255. – reference: Pilatus U, Shim H, Artemov D, Davis D, van Zijl PC, Glickson JD. Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR. Magn Reson Med 1997; 37: 825-832. – reference: Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? AJR Am J Rentogenol 2009; 193: 840-849. – reference: Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med 1995; 33: 697-712. – reference: Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 2002; 16: 172-178. – reference: Kuroki-Suzuki S, Kuroki Y, Nasu K, Nawano S, Moriyama N, Okazaki M. Detecting breast cancer with non-contrast MR imaging: combining diffusion-weighted and STIR imaging. Magn Reson Med Sci 2007; 6: 21-27. – reference: Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 1968; 49: 1768-1777. – reference: Kärger J, Pfeifer H, Heink W. Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Adv Magn Reson 1988; 12: 1-89. – reference: Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006; 24: 319-324. – volume: 24 start-page: 319 year: 2006 end-page: 324 article-title: Quantitative diffusion imaging in breast cancer: a clinical prospective study publication-title: J Magn Reson Imaging – volume: 168 start-page: 497 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 12 start-page: 1 year: 1988 end-page: 89 article-title: Principles and applications of self‐diffusion measurements by nuclear magnetic resonance publication-title: Adv Magn Reson – volume: 239 start-page: 223 year: 2006 end-page: 231 article-title: Pituitary macroadenomas: preoperative evaluation of consistency with diffusion‐weighted MR imaging—initial experience publication-title: Radiology – volume: 193 start-page: 840 year: 2009 end-page: 849 article-title: H MR spectroscopy and diffusion‐weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? publication-title: AJR Am J Rentogenol – volume: 49 start-page: 1768 year: 1968 end-page: 1777 article-title: Restricted self‐diffusion of protons in colloidal systems by the pulsed‐gradient, spin‐echo method publication-title: J Chem Phys – volume: 14 start-page: 643 year: 2007 end-page: 650 article-title: Body diffusion‐weighted MR imaging using high b‐value for malignant tumor screening: usefulness and necessity of referring to T2‐weighted images and creating fusion images publication-title: Acad Radiol – volume: 7 start-page: 23 year: 2008 end-page: 29 article-title: Apparent diffusion coefficients of breast tumor: clinical application publication-title: Magn Reson Med Sci – volume: 51 start-page: 278 year: 2004 end-page: 285 article-title: The existence of biexponential signal decay in magnetic resonance diffusion‐weighted imaging appears to be independent of compartmentalization publication-title: Magn Reson Med – volume: 26 start-page: 1042 year: 2002 end-page: 1046 article-title: Diffusion‐weighted half‐Fourier single‐shot turbo spin echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma publication-title: J Comput Assist Tomogr – volume: 3 start-page: 79 year: 2004 end-page: 85 article-title: Diffusion‐weighted imaging of breast cancer with the sensitivity encoding technique: analysis of the apparent diffusion coefficient value publication-title: Magn Reson Med Sci – volume: 33 start-page: 697 year: 1995 end-page: 712 article-title: Theoretical model for water diffusion in tissues publication-title: Magn Reson Med – volume: 26 start-page: 88 year: 2008 end-page: 102 article-title: Quantification of water compartmentation in cell suspensions by diffusion‐weighted and T ‐weighted MRI publication-title: Magn Reson Imaging – volume: 4 start-page: 35 year: 2005 end-page: 42 article-title: ADC mapping of benign and malignant breast tumors publication-title: Magn Reson Med Sci – volume: 26 start-page: 529 year: 2007 end-page: 540 article-title: Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion‐weighted MRI publication-title: J Magn Reson Imaging – volume: 27 start-page: 176 year: 2009 end-page: 187 article-title: On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? publication-title: Magn Reson Imaging – volume: 15 start-page: 693 year: 2002 end-page: 704 article-title: In vivo diffusion‐weighted MRI of the breast: potential for lesion characterization publication-title: J Magn Reson Imaging – volume: 17 start-page: 2646 year: 2007 end-page: 2655 article-title: Quantitative diffusion‐weighted MR imaging in the differential diagnosis of breast lesion publication-title: Eur Radiol – volume: 4 start-page: 175 year: 2005 end-page: 186 article-title: Diffusion‐weighted imaging of the liver: technical challenges and prospects for the future publication-title: Magn Reson Med Sci – volume: 9 start-page: 195 year: 2010 end-page: 207 article-title: Biexponential signal attenuation analysis of diffusion‐weighted imaging of breast publication-title: Magn Reson Med Sci – volume: 25 start-page: 692 year: 2004 end-page: 698 article-title: Water diffusion compartmentation at high values in ischemic human brain publication-title: AJNR Am J Neuroradiol – volume: 6 start-page: 211 year: 2007 end-page: 224 article-title: Practical aspects of assessing tumor using clinical diffusion‐weighted imaging in the body publication-title: Magn Reson Med Sci – volume: 6 start-page: 147 year: 2007 end-page: 155 article-title: Whole‐body MRI for detecting metastatic bone tumor: diagnostic value of diffusion‐weighted images publication-title: Magn Reson Med Sci – volume: 37 start-page: 825 year: 1997 end-page: 832 article-title: Intracellular volume and apparent diffusion constants of perfused cancer cell cultures, as measured by NMR publication-title: Magn Reson Med – volume: 5 start-page: 201 year: 2006 end-page: 206 article-title: Isotropic diffusion‐weighted MR imaging with tetrahedral gradients in the upper abdomen publication-title: Magn Reson Med Sci – volume: 246 start-page: 116 year: 2008 end-page: 124 article-title: Meta‐analysis of MR imaging in the diagnosis of breast lesions publication-title: Radiology – volume: 16 start-page: 172 year: 2002 end-page: 178 article-title: Differentiation of clinically benign and malignant breast lesions using diffusion‐weighted imaging publication-title: J Magn Reson Imaging – volume: 30 start-page: 1 year: 2010 end-page: 9 article-title: Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments publication-title: Jpn J Magn Reson Med – volume: 36 start-page: 847 year: 1996 end-page: 857 article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion‐weighted imaging publication-title: Magn Reson Med – volume: 6 start-page: 135 year: 2006 end-page: 143 article-title: Diffusion‐weighted magnetic resonance imaging and its application to cancer publication-title: Cancer Imaging – volume: 30 start-page: 249 year: 2009 end-page: 255 article-title: Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5‐T publication-title: J Magn Reson Imaging – volume: 26 start-page: 897 year: 2008 end-page: 904 article-title: Biexponential analysis of diffusion‐related signal decay in normal human cortical and deep gray matter publication-title: Magn Reson Imaging – volume: 6 start-page: 21 year: 2007 end-page: 27 article-title: Detecting breast cancer with non‐contrast MR imaging: combining diffusion‐weighted and STIR imaging publication-title: Magn Reson Med Sci – volume: 193 start-page: 260 year: 2009 end-page: 266 article-title: Diffusion‐weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings publication-title: AJR Am J Roentgenol – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An algorithm for least‐squares estimation of nonlinear parameters publication-title: J Soc Industr Appl Math – volume: 42 start-page: 605 year: 2007 end-page: 613 article-title: Tumor detection by diffusion‐weighted MRI and ADC‐mapping—initial clinical experiences in comparison to PET‐CT publication-title: Invest Radiol – volume: 9 start-page: 53 year: 1999 end-page: 60 article-title: Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas publication-title: J Magn Reson Imaging – volume: 24 start-page: 563 year: 2006 end-page: 568 article-title: Biexponential characterization of prostate tissue water diffusion decay curves over an extended ‐factor range publication-title: Magn Reson Imaging – volume: 25 start-page: 692 year: 2004 ident: e_1_2_6_37_2 article-title: Water diffusion compartmentation at high b values in ischemic human brain publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_32_2 doi: 10.2463/mrms.9.195 – ident: e_1_2_6_6_2 doi: 10.1097/RLI.0b013e31804ffd49 – ident: e_1_2_6_12_2 doi: 10.2463/mrms.4.35 – ident: e_1_2_6_5_2 doi: 10.2463/mrms.6.147 – ident: e_1_2_6_33_2 doi: 10.2463/mrms.5.201 – ident: e_1_2_6_4_2 doi: 10.2463/mrms.4.175 – ident: e_1_2_6_11_2 doi: 10.2463/mrms.3.79 – ident: e_1_2_6_26_2 doi: 10.1002/mrm.1910370605 – ident: e_1_2_6_23_2 doi: 10.1063/1.1670306 – ident: e_1_2_6_17_2 doi: 10.1148/radiol.2461061298 – ident: e_1_2_6_30_2 doi: 10.1002/jmri.21030 – ident: e_1_2_6_38_2 doi: 10.1016/j.mri.2008.01.042 – ident: e_1_2_6_10_2 doi: 10.1097/00004728-200211000-00033 – ident: e_1_2_6_16_2 doi: 10.2463/mrms.7.23 – ident: e_1_2_6_14_2 doi: 10.1007/s00330-007-0621-2 – ident: e_1_2_6_31_2 doi: 10.1016/j.mri.2007.04.013 – ident: e_1_2_6_19_2 doi: 10.2214/AJR.08.2128 – ident: e_1_2_6_25_2 doi: 10.1002/mrm.1910360607 – ident: e_1_2_6_27_2 doi: 10.1002/mrm.10702 – ident: e_1_2_6_21_2 doi: 10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2 – ident: e_1_2_6_24_2 doi: 10.1016/B978-0-12-025512-2.50004-X – ident: e_1_2_6_28_2 doi: 10.1016/j.mri.2008.06.003 – ident: e_1_2_6_15_2 doi: 10.2463/mrms.6.21 – ident: e_1_2_6_22_2 doi: 10.1148/radiol.2383042204 – ident: e_1_2_6_39_2 doi: 10.1016/j.mri.2005.12.008 – ident: e_1_2_6_3_2 doi: 10.2463/mrms.6.211 – ident: e_1_2_6_13_2 doi: 10.1002/jmri.20643 – ident: e_1_2_6_18_2 doi: 10.2214/AJR.08.1670 – volume: 30 start-page: 1 year: 2010 ident: e_1_2_6_36_2 article-title: Accuracy of fast and slow component fractions and their ADCs derived from the biexponential DWI signal attenuation curve: phantom experiments publication-title: Jpn J Magn Reson Med – ident: e_1_2_6_2_2 doi: 10.1102/1470-7330.2006.0021 – ident: e_1_2_6_7_2 doi: 10.1016/j.acra.2007.02.006 – ident: e_1_2_6_29_2 doi: 10.1002/mrm.1910330516 – ident: e_1_2_6_20_2 doi: 10.1002/jmri.21854 – ident: e_1_2_6_8_2 doi: 10.1002/jmri.10140 – ident: e_1_2_6_9_2 doi: 10.1002/jmri.10116 – ident: e_1_2_6_34_2 doi: 10.1137/0111030 – ident: e_1_2_6_35_2 doi: 10.1148/radiology.168.2.3393671 |
SSID | ssj0009974 |
Score | 2.2291145 |
Snippet | Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non‐monoexponential... Previous studies have reported that the signal attenuation of diffusion weighted magnetic resonance imaging for tumor tissues displays a non-monoexponential... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 890 |
SubjectTerms | Adult Aged Aged, 80 and over Algorithms apparent diffusion coefficient biexponential signal attenuation breast cancer Breast Neoplasms - pathology component fraction Diffusion Magnetic Resonance Imaging - methods diffusion weighted imaging Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Male Middle Aged Reproducibility of Results Sensitivity and Specificity |
Title | Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer |
URI | https://api.istex.fr/ark:/67375/WNG-SG6P0PW0-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.23277 https://www.ncbi.nlm.nih.gov/pubmed/22161802 https://www.proquest.com/docview/1351575241 https://www.proquest.com/docview/1036876150 https://www.proquest.com/docview/1434023552 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuFAqUlIIMQqiXbJPYcWJxQi1tQdqqKlTbA8KKHftSuov2R0I99RF4xj5JZ5yfqqggxC2SJ5Zjz3i-2DPfALwpCPWiq4tzbm0suM1jZRITpyKtfC1LmZSU4Dw8kPvH4tNJfrIE77pcmIYfoj9wI8sI-zUZeGVmW9ekoWfTswHCgYIyyVMuiTd_5-iaOkqphoG5ELTPKNGxCiXZVv_mDV90h6b1521A8yZuDY5ndwW-dkNu4k1OB4u5Gdjz39gc__ObHsKDFpCy940GPYIlN16Fe8P2yn0V7oYYUTt7DN-2-5qFMzbxLMQiMnN58YsYwx3bGX1kFA6CvVUt1QmjY15GVY-7PZZRaidVFKAeDEXEz5klzZs-gePdD1-29-O2PENsBf6GxFIWtrToArk0iu4vHffo64ytalk7521R1S5B_JV6VafcKYnNopQu9z73UvGnsDyejN0zYNZZUQteV1lSCl9mJrGF8s7lOfZTCRvBZrdQ2rbc5VRC47tuWJczjTOnw8xF8LoX_dEQdtwm9Dasdi9RTU8pwq3I9ehgT3_ek4fJ4SjRKoKNTh10a9wzTUUNEeUi9ongVd-MZkl3LdXYTRYog8gAHQ3C7b_ICC6IbijPIlhrVK0fUJZRJYMEWzaDwvz5W_TwaBge1v9d9DncR-CXNbFyG7A8ny7cCwRXc_MyWNEVKaUfwQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlAuPAqUQAGDEOol22xiO7HEBbW0W2hWVWm1vYCVOPaldBftQ0Kc-An8Rn4JM86jKioIcYvkieXHjOezPf4G4GVKqBddXSgSY0KeGBGqMirDPu8XrpKZjDJ64JwP5eCEvzsVp0vwun0LU_NDdAduZBl-vSYDpwPprQvW0PPpeQ_xQJpegxWOQIO2XjtHF-RRStUczCmnlUbxllcoire6Xy95oxUa2K9XQc3LyNW7nt3b8LFtdB1xctZbzMue-fYbn-P_9uoO3GowKXtTK9FdWLLjNbiRN7fua3Ddh4ma2T34tN2lLZyxiWM-HJGVP7__INJwy3ZG-4wiQrC2omE7YXTSyyjxcbvMMnrdSUkFqIaSguLnzJDyTe_Dye7b4-1B2GRoCA3HnUgoZWoyg14wkaWiK0ybOHR3pSkqWVnrTFpUNkII1neq6idWSSzmmbTCOeGkSh7A8ngytg-BGWt4xZOqiKOMuywuI5MqZ60QWE_BTQCb7Uxp09CXUxaNz7omXo41jpz2IxfAi070S83ZcZXQKz_dnUQxPaMgt1To0XBPf9iTh9HhKNIqgI1WH3Rj3zNNeQ0R6CL8CeB5V4yWSdctxdhOFiiD4AB9DSLuv8jwhBPjkIgDWK91rWtQHFMygwhLNr3G_LkvOj_K_cejfxd9BquD4_xAH-wP3z-Gm4gD4zp0bgOW59OFfYJYa14-9Sb1CxdiI-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXaAGDEOolW2_iOLE4oZZtC-xqVai2hworcexL6W61Dwlx6k_gN_aXdMZ5VEUFIW6RPLH8mPF8tsffALxJCfWiqwuT2JhQxCYJVcGLsCu6uStlJnlGD5z7A7l3KD4eJUdL8K55C1PxQ7QHbmQZfr0mAz8r3dYVaejp9LSDcCBNb8GKwCr9furgijtKqYqCORW00CjR0ArxaKv99ZozWqFx_XET0rwOXL3n6d2D46bNVcDJSWcxLzrm5290jv_Zqftwt0ak7H2lQg9gyY7XYLVf37mvwW0fJGpmD-Hbdpu0cMYmjvlgRFZcnP8iynDLdkb7jOJBsLa85jphdM7LKO1xs8gyettJKQWohoJC4ufMkOpNH8Fh78PX7b2wzs8QGoH7kFDK1GQGfWAsC0UXmDZ26OwKk5eytNaZNC8tRwDWdarsxlZJLBaZtIlziZMqfgzL48nYPgVmrBGliMs84plwWVRwkypnbZJgPbkwAWw2E6VNTV5OOTS-64p2OdI4ctqPXACvW9GzirHjJqG3frZbiXx6QiFuaaJHg139ZVcO-XDEtQpgo1EHXVv3TFNWQ4S5CH4CeNUWo13SZUs-tpMFyiA0QE-DePsvMiIWxDeURAE8qVStbVAUUSoDjiWbXmH-3BfdP-j7j2f_LvoSVoc7Pf15f_BpHe4gCIyquLkNWJ5PF_Y5Aq158cIb1CWUqyKP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparisons+of+multi+b-value+DWI+signal+analysis+with+pathological+specimen+of+breast+cancer&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Tamura%2C+Takayuki&rft.au=Usui%2C+Shuji&rft.au=Murakami%2C+Shigeru&rft.au=Arihiro%2C+Koji&rft.date=2012-09-01&rft.eissn=1522-2594&rft.volume=68&rft.issue=3&rft.spage=890&rft_id=info:doi/10.1002%2Fmrm.23277&rft_id=info%3Apmid%2F22161802&rft.externalDocID=22161802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |