Improved SENSE imaging using accurate coil sensitivity maps generated by a global magnitude-phase fitting method

Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image‐domain parallel imaging (i.e., SENSE). Methods Initial coil sensitivity maps were derived from the center k‐space lines by a common self‐calibratio...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 74; no. 1; pp. 217 - 224
Main Authors Ma, Ya-Jun, Liu, Wentao, Tang, Xin, Gao, Jia-Hong
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25375

Cover

Loading…
Abstract Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image‐domain parallel imaging (i.e., SENSE). Methods Initial coil sensitivity maps were derived from the center k‐space lines by a common self‐calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self‐calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude‐phase fitting approach with traditional local fitting methods. Results Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts. Conclusion A global magnitude‐phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high‐quality parallel images. Magn Reson Med 74:217–224, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image‐domain parallel imaging (i.e., SENSE). Methods Initial coil sensitivity maps were derived from the center k‐space lines by a common self‐calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self‐calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude‐phase fitting approach with traditional local fitting methods. Results Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts. Conclusion A global magnitude‐phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high‐quality parallel images. Magn Reson Med 74:217–224, 2015. © 2014 Wiley Periodicals, Inc.
Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain parallel imaging (i.e., SENSE). Methods Initial coil sensitivity maps were derived from the center k-space lines by a common self-calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self-calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude-phase fitting approach with traditional local fitting methods. Results Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts. Conclusion A global magnitude-phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high-quality parallel images. Magn Reson Med 74:217-224, 2015. © 2014 Wiley Periodicals, Inc.
Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain parallel imaging (i.e., SENSE). Methods Initial coil sensitivity maps were derived from the center k-space lines by a common self-calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self-calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude-phase fitting approach with traditional local fitting methods. Results Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts. Conclusion A global magnitude-phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high-quality parallel images. Magn Reson Med 74:217-224, 2015.
To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain parallel imaging (i.e., SENSE). Initial coil sensitivity maps were derived from the center k-space lines by a common self-calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self-calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude-phase fitting approach with traditional local fitting methods. Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts. A global magnitude-phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high-quality parallel images. Magn Reson Med 74:217-224, 2015. © 2014 Wiley Periodicals, Inc.
To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain parallel imaging (i.e., SENSE).PURPOSETo develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain parallel imaging (i.e., SENSE).Initial coil sensitivity maps were derived from the center k-space lines by a common self-calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self-calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude-phase fitting approach with traditional local fitting methods.METHODSInitial coil sensitivity maps were derived from the center k-space lines by a common self-calibration method. Then continuous trigonometric functions were used to fit both magnitude and phase maps of the self-calibrated coil sensitivity profile globally. Further, the global fitted coil sensitivity maps were adopted for SENSE reconstruction. Numerical simulations, as well as experiments on phantoms and human subjects were performed to evaluate and compare the effectiveness of this global magnitude-phase fitting approach with traditional local fitting methods.Both simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts.RESULTSBoth simulation and experimental results demonstrated that the proposed novel global fitting method was able to obtain accurate coil sensitivity profiles without Gibbs oscillations. The resultant SENSE images were improved substantially in terms of aliasing imaging artifacts.A global magnitude-phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high-quality parallel images. Magn Reson Med 74:217-224, 2015. © 2014 Wiley Periodicals, Inc.CONCLUSIONA global magnitude-phase fitting method for better estimation of accurate coil sensitivity maps was developed, and it was successfully used in producing high-quality parallel images. Magn Reson Med 74:217-224, 2015. © 2014 Wiley Periodicals, Inc.
Author Liu, Wentao
Tang, Xin
Gao, Jia-Hong
Ma, Ya-Jun
Author_xml – sequence: 1
  givenname: Ya-Jun
  surname: Ma
  fullname: Ma, Ya-Jun
  organization: Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
– sequence: 2
  givenname: Wentao
  surname: Liu
  fullname: Liu, Wentao
  organization: Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
– sequence: 3
  givenname: Xin
  surname: Tang
  fullname: Tang, Xin
  organization: Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
– sequence: 4
  givenname: Jia-Hong
  surname: Gao
  fullname: Gao, Jia-Hong
  email: jgao@pku.edu.cn
  organization: Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25043575$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPHDEQhK0IFBbCIX8gspRLchjw-DGPY7TaABIQKSCBuFgeu2cwmRe2h7D_Pp4scEAiuXQf-quSumoXbfVDDwh9TMlBSgg97Fx3QAXLxTu0SAWlCRUl30ILknOSsLTkO2jX-ztCSFnm_D3aoYJwJnKxQONJN7rhAQy-WJ1frLDtVGP7Bk9-nkrryakAWA-2xR56b4N9sGGNOzV63EAP89ngao0VbtqhUm08Nb0Nk4FkvFUecG1DmM06CLeD-YC2a9V62H_ae-jy--pyeZyc_jg6WX47TTQXpUhEXolaFSlQURnGK6NqqCua5kCVAK10poTRUIs0MwDM5FlFVaF5JqAgLGN76MvGNn53P4EPsrNeQ9uqHobJy7SgWQypYOL_aFbyGFvGaEQ_v0Lvhsn18Y9IFSUtWVHMhp-eqKnqwMjRxVTdWj6nHoGvG0C7wXsH9QuSEjk3KmOj8m-jkT18xWobVLBDH5yy7b8Uv20L67et5dnPs2dFslFYH-DxRaHcL5nlM3l1fiRvrq7LJb9ZSsb-AMWJwfc
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_mrm_27066
crossref_primary_10_1118_1_4905163
crossref_primary_10_1002_mrm_29400
crossref_primary_10_1002_mrm_27062
crossref_primary_10_1002_mrm_28858
crossref_primary_10_1002_mrm_29548
crossref_primary_10_1109_ACCESS_2018_2874382
crossref_primary_10_1097_CM9_0000000000000103
crossref_primary_10_1002_mrm_25872
crossref_primary_10_1002_mrm_28919
crossref_primary_10_1002_mrm_26908
crossref_primary_10_1088_1674_1056_26_11_118701
crossref_primary_10_1002_mrm_26307
crossref_primary_10_1007_s10334_023_01142_7
crossref_primary_10_1002_mrm_28718
crossref_primary_10_1109_TRPMS_2020_2991877
Cites_doi 10.1002/mrm.10092
10.1109/ISBI.2012.6235567
10.1002/mrm.1241
10.1002/mrm.21245
10.1002/mrm.21691
10.1002/(SICI)1522-2594(200005)43:5<716::AID-MRM14>3.0.CO;2-K
10.1002/mrm.1910160203
10.1002/mrm.10087
10.1002/mrm.24448
10.1007/BFb0094072
10.1016/0022-2364(76)90233-X
10.1002/mrm.22504
10.1088/0031-9155/52/7/R01
10.1002/mrm.24751
10.1002/mrm.24427
10.1097/01.rmr.0000136558.09801.dd
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1137/1.9780898719574
10.1016/0022-2364(79)90019-2
10.1002/mrm.22961
10.1002/mrm.10354
10.1002/hbm.10109
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7QO
7X8
DOI 10.1002/mrm.25375
DatabaseName Istex
CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList
Biochemistry Abstracts 1
Engineering Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 224
ExternalDocumentID 3717013851
25043575
10_1002_mrm_25375
MRM25375
ark_67375_WNG_ZWX9C4ZC_3
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: China's National Strategic Basic Research Program
  funderid: (973) (2012CB720700
– fundername: Natural Science Foundation of China
  funderid: 81227003
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7QO
7X8
ID FETCH-LOGICAL-c4595-57b5fa81e25bd34bdafefb217e2a5ecac6a5dcef516dee3d76b2a8c465e80363
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 00:16:51 EDT 2025
Fri Jul 11 04:38:56 EDT 2025
Fri Jul 25 12:06:05 EDT 2025
Wed Feb 19 02:41:12 EST 2025
Tue Jul 01 01:20:56 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Jan 22 16:45:03 EST 2025
Wed Oct 30 09:55:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords phase
parallel imaging
magnitude
coil sensitivity profile
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4595-57b5fa81e25bd34bdafefb217e2a5ecac6a5dcef516dee3d76b2a8c465e80363
Notes istex:CFB0EF54556B339A18B68DC118C16EE05FFCEA21
ark:/67375/WNG-ZWX9C4ZC-3
Natural Science Foundation of China - No. 81227003
ArticleID:MRM25375
China's National Strategic Basic Research Program - No. (973) (2012CB720700
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25375
PMID 25043575
PQID 1689293885
PQPubID 1016391
PageCount 8
ParticipantIDs proquest_miscellaneous_1826594835
proquest_miscellaneous_1694974632
proquest_journals_1689293885
pubmed_primary_25043575
crossref_primary_10_1002_mrm_25375
crossref_citationtrail_10_1002_mrm_25375
wiley_primary_10_1002_mrm_25375_MRM25375
istex_primary_ark_67375_WNG_ZWX9C4ZC_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07
July 2015
2015-07-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 1979;34:425-433.
Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202.
Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion-joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682.
Bydder M, Larkman DJ, Hajnal JV. Combination of signals from array coils using image-based estimation of coil sensitivity profiles. Magn Reson Med 2002;47:539-548.
McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn Reson Med 2002;47:529-538.
Huang F, Chen Y, Yin W, Lin W, Ye X, Guo W, Reykowski A. A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE. Magn Reson Med 2010;64:1078-1088.
Jørsboe OG, Mejlbro L. The Carleson-Hunt Theorem on Fourier Series. Lecture Notes in Mathematics 911. Berlin, Germany, New York, NY: Springer-Verlag; 1982.
Keil B, Blau JN, Biber S, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 2013;70:248-258.
Jenkinson M. A fast, automated, N-dimensional phase unwrapping algorithm. Magn Reson Med 2003;49:193-197.
Trefethen L. Numerical linear algebra. Philadelphia, PA: SIAM Press; 1997.
Liu WT, Tang X, Ma YJ, Gao JH. 3D phase unwrapping using global expected phase as a reference: application to MRI global shimming. Magn Reson Med 2013;70:160-168.
Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biol 2007;52:15-55.
Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976;24:71-85.
Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
Pruessmann KP, Weiger M, Scheidegger MB, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
Lee RF, Westgate CR, Weiss RG, Bottomley PA. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI. Magn Reson Med 2000;43:716-725.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
Lin FH, Chen YJ, Belliveau JW, Wald LL. A wavelet-based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction. Hum Brain Mapp 2003;19:96-111.
Keil B, Alagappan V, Mareyam A, et al. Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 2011;66:1777-1787.
Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236.
Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. MAGMA 1998;7:4254.
2002; 47
2010; 64
1976; 24
1979; 34
2012
1990; 16
2000; 43
2004; 15
1997
2011; 66
2013; 70
2003; 49
1999; 42
1982
2003; 19
2007; 52
1998; 7
2001; 46
2008; 60
2014; 71
2007; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_24_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Jørsboe OG (e_1_2_7_19_1) 1982
Jakob PM (e_1_2_7_10_1) 1998; 7
References_xml – reference: Pruessmann KP, Weiger M, Scheidegger MB, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
– reference: Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
– reference: Bydder M, Larkman DJ, Hajnal JV. Combination of signals from array coils using image-based estimation of coil sensitivity profiles. Magn Reson Med 2002;47:539-548.
– reference: Lin FH, Chen YJ, Belliveau JW, Wald LL. A wavelet-based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction. Hum Brain Mapp 2003;19:96-111.
– reference: Huang F, Chen Y, Yin W, Lin W, Ye X, Guo W, Reykowski A. A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE. Magn Reson Med 2010;64:1078-1088.
– reference: Keil B, Alagappan V, Mareyam A, et al. Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 2011;66:1777-1787.
– reference: Larkman DJ, Nunes RG. Parallel magnetic resonance imaging. Phys Med Biol 2007;52:15-55.
– reference: Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 1976;24:71-85.
– reference: Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion-joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682.
– reference: Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225.
– reference: Jørsboe OG, Mejlbro L. The Carleson-Hunt Theorem on Fourier Series. Lecture Notes in Mathematics 911. Berlin, Germany, New York, NY: Springer-Verlag; 1982.
– reference: McKenzie CA, Yeh EN, Ohliger MA, Price MD, Sodickson DK. Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn Reson Med 2002;47:529-538.
– reference: Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 2004;15:223-236.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
– reference: Jenkinson M. A fast, automated, N-dimensional phase unwrapping algorithm. Magn Reson Med 2003;49:193-197.
– reference: Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. MAGMA 1998;7:4254.
– reference: Liu WT, Tang X, Ma YJ, Gao JH. 3D phase unwrapping using global expected phase as a reference: application to MRI global shimming. Magn Reson Med 2013;70:160-168.
– reference: Keil B, Blau JN, Biber S, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 2013;70:248-258.
– reference: Hoult DI, Lauterbur PC. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 1979;34:425-433.
– reference: Trefethen L. Numerical linear algebra. Philadelphia, PA: SIAM Press; 1997.
– reference: Lee RF, Westgate CR, Weiss RG, Bottomley PA. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI. Magn Reson Med 2000;43:716-725.
– reference: Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202.
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1078
  year: 2010
  end-page: 1088
  article-title: A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self‐feeding sparse SENSE
  publication-title: Magn Reson Med
– year: 1982
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  article-title: The NMR phased array
  publication-title: Magn Reson Med
– volume: 70
  start-page: 160
  year: 2013
  end-page: 168
  article-title: 3D phase unwrapping using global expected phase as a reference: application to MRI global shimming
  publication-title: Magn Reson Med
– volume: 49
  start-page: 193
  year: 2003
  end-page: 197
  article-title: A fast, automated, N‐dimensional phase unwrapping algorithm
  publication-title: Magn Reson Med
– volume: 24
  start-page: 71
  year: 1976
  end-page: 85
  article-title: The signal‐to‐noise ratio of the nuclear magnetic resonance experiment
  publication-title: J Magn Reson
– start-page: 394
  year: 2012
  end-page: 397
– volume: 15
  start-page: 223
  year: 2004
  end-page: 236
  article-title: SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method
  publication-title: Top Magn Reson Imaging
– volume: 57
  start-page: 1196
  year: 2007
  end-page: 1202
  article-title: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)
  publication-title: Magn Reson Med
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 34
  start-page: 425
  year: 1979
  end-page: 433
  article-title: The sensitivity of the zeugmatographic experiment involving human samples
  publication-title: J Magn Reson
– year: 1997
– volume: 19
  start-page: 96
  year: 2003
  end-page: 111
  article-title: A wavelet‐based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction
  publication-title: Hum Brain Mapp
– volume: 66
  start-page: 1777
  year: 2011
  end-page: 1787
  article-title: Size‐optimized 32‐channel brain arrays for 3 T pediatric imaging
  publication-title: Magn Reson Med
– volume: 47
  start-page: 529
  year: 2002
  end-page: 538
  article-title: Self‐calibrating parallel imaging with automatic coil sensitivity extraction
  publication-title: Magn Reson Med
– volume: 43
  start-page: 716
  year: 2000
  end-page: 725
  article-title: An analytical SMASH procedure (ASP) for sensitivity‐encoded MRI
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary ‐space trajectories
  publication-title: Magn Reson Med
– volume: 7
  start-page: 4254
  year: 1998
  article-title: AUTO‐SMASH: a self‐calibrating technique for SMASH imaging
  publication-title: MAGMA
– volume: 70
  start-page: 248
  year: 2013
  end-page: 258
  article-title: A 64–channel 3T array coil for accelerated brain MRI
  publication-title: Magn Reson Med
– volume: 47
  start-page: 539
  year: 2002
  end-page: 548
  article-title: Combination of signals from array coils using image‐based estimation of coil sensitivity profiles
  publication-title: Magn Reson Med
– volume: 52
  start-page: 15
  year: 2007
  end-page: 55
  article-title: Parallel magnetic resonance imaging
  publication-title: Phys Med Biol
– volume: 60
  start-page: 674
  year: 2008
  end-page: 682
  article-title: Image reconstruction by regularized nonlinear inversion—joint estimation of coil sensitivities and image content
  publication-title: Magn Reson Med
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.10092
– ident: e_1_2_7_16_1
  doi: 10.1109/ISBI.2012.6235567
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.21245
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.21691
– ident: e_1_2_7_20_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<716::AID-MRM14>3.0.CO;2-K
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.1910160203
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.10087
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.24448
– volume: 7
  start-page: 4254
  year: 1998
  ident: e_1_2_7_10_1
  article-title: AUTO‐SMASH: a self‐calibrating technique for SMASH imaging
  publication-title: MAGMA
– volume-title: The Carleson–Hunt Theorem on Fourier Series. Lecture Notes in Mathematics 911
  year: 1982
  ident: e_1_2_7_19_1
  doi: 10.1007/BFb0094072
– ident: e_1_2_7_4_1
  doi: 10.1016/0022-2364(76)90233-X
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.22504
– ident: e_1_2_7_3_1
  doi: 10.1088/0031-9155/52/7/R01
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.24427
– ident: e_1_2_7_2_1
  doi: 10.1097/01.rmr.0000136558.09801.dd
– ident: e_1_2_7_7_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_7_24_1
  doi: 10.1137/1.9780898719574
– ident: e_1_2_7_5_1
  doi: 10.1016/0022-2364(79)90019-2
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.22961
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.10354
– ident: e_1_2_7_17_1
  doi: 10.1002/hbm.10109
SSID ssj0009974
Score 2.2627306
Snippet Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image‐domain...
To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain...
Purpose To develop a novel coil sensitivity processing technique that is able to reduce or eliminate aliasing artifacts and noise amplification in image-domain...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 217
SubjectTerms coil sensitivity profile
magnitude
parallel imaging
phase
Title Improved SENSE imaging using accurate coil sensitivity maps generated by a global magnitude-phase fitting method
URI https://api.istex.fr/ark:/67375/WNG-ZWX9C4ZC-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25375
https://www.ncbi.nlm.nih.gov/pubmed/25043575
https://www.proquest.com/docview/1689293885
https://www.proquest.com/docview/1694974632
https://www.proquest.com/docview/1826594835
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqViAuFAqUQkEGIdRLtoljJ7E4oWVLhbR7aIu6qpAsPyZl1e5Dm40EnPgJ_EZ-CX4kqYoKQtwieeLYzow99nz-BqFXeWIKAoZFhhRlRLksI05UHIEyce5ScSc-gj8cZYcf6YcxG6-hN-1dmMAP0R24Ocvw87UzcKmq_SvS0Oly2iMszd0F8yTNHG_-u6Mr6ijOAwNzTt08w2nLKhST_e7Na2vRhhvWLzc5mtf9Vr_wHGyiT22TA97kolevVE9_-43N8T_7dA_dbRxS_DZo0H20BrMtdHvYhNy30C2PEdXVA7QMBxBg8PFgdDzAk6nPcIQddP4cS61rRzuB9XxyiSuHiw-JKfBULip87umtrXuL1VcsceAhsUUOvFQb-Pn9x-KzXVBxOfFAbBwyWz9EJweDk_5h1KRsiDRlnEUsV6yURQKEKZNSZWQJpbLbHiCSgZY6k8xoKFmSGYDU5JkistA0Y1C4kPIjtD6bz-AxwrwkBhKZWu9f0xhiCbkBO91QQjWjZbqD9tp_J3RDZ-6yalyKQMRMhB1M4QdzB73sRBeBw-MmoddeAToJubxwoLecidPRe3F2OuZ9etYX9sO7rYaIxt4rkWSF9TPTorD1vOiKraW68Iucwbx2MpxapcxS8hcZu9tzBDqprWc7aF_XIE82x1xL97wO_bkvYng09A9P_l30KbpjfUEWkMi7aH21rOGZ9bdW6rk3rF80BygW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK44XjnK0UMAghPqSbeLYOSRe0LJlge4-tIu6qlRZPibtqt1DuxsJeOIn8Bv5JfhIUhUVhHiL5InjY8b-xp58g9CrNNIZAc0CTbIioLkogpzIMACpw9Sm4o7cDX6vn3Q_049DNlxBb-p_YTw_RHPgZi3DrdfWwO2B9M4Fa-h4Pm4RFqfsGlqjBmhY1-vd_gV5VJ57DuaU2pUmpzWvUEh2mlcv7UZrdmC_XAU1LyNXt_Xs3kHHdaN9xMlZq1zKlvr2G5_j__bqLrpdYVL81ivRPbQCk3V0o1fduq-j6y5MVC3uo7k_gwCNDzr9gw4ejV2SI2yj50-wUKq0zBNYTUfneGFD431uCjwWswU-cQzXBuFi-RUL7KlITJGNXyo1_Pz-Y3Zq9lRcjFwsNvbJrR-gwW5n0O4GVdaGQFGWs4ClkhUii4AwqWMqtSigkMbzASIYKKESwbSCgkWJBoh1mkgiMmVmEDJ7q_wQrU6mE9hAOC-IhkjExgFQNIRQQKrBrDiUUMVoEW-i7XryuKoYzW1ijXPuuZgJN4PJ3WBuopeN6MzTeFwl9NppQCMh5mc27i1l_LD_nh8dDvM2PWpz8-GtWkV4ZfILHiWZgZpxlpl6XjTFxljtDYyYwLS0Mjk1WpnE5C8yxuGzHDqxqeeRV7-mQY5vjtmWbjsl-nNfeG-_5x4e_7voc3SzO-jt8b0P_U9P0C0DDZkPTN5Cq8t5CU8N_FrKZ87KfgGd5Cw1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFLVKKypeWMpWKGAQQn3JNHHsLOIJDTOUZUaoLeqoqmR5uS6jdhbNTCTgiU_gG_kSvExSFRWEeIuUG8d27rWP7ZNzEXqeJ7ogoFmkSWEiWgoTlUTGEUgd5y4Vd-JP8Hv9bPcTfTdggxX0sv4XJuhDNBtuLjL8eO0CfKrNzrlo6Gg2ahGW5uwKWqOZRRIOEe2da0eVZZBgzqkbaEpaywrFZKd59MJktOb69ctlSPMicPUzT_cGOq7rHAgnp61qIVvq229yjv_ZqJvo-hKR4lfBhW6hFRhvoPXe8sx9A131JFE1v41mYQcCNN7v9Pc7eDjyKY6w486fYKFU5XQnsJoMz_DcEeNDZgo8EtM5PvH61hbfYvkVCxyESOwtx16qNPz8_mP62c6o2Aw9ExuH1NZ30EG3c9DejZY5GyJFWckilktmRJEAYVKnVGphwEi77gEiGCihMsG0AsOSTAOkOs8kEYWiGYPCnSnfRavjyRjuI1waoiERqYX_isYQC8g12PGGEqoYNekm2q6_HVdLPXOXVuOMByVmwm1nct-Zm-hZYzoNIh6XGb3wDtBYiNmpY73ljB_23_Cjw0HZpkdtbl-8VXsIXwb8nCdZYYFmWhS2nKfNbRuq7vxFjGFSOZuSWqfMUvIXG7vccwo6qS3nXvC-pkJebY65mm57H_pzW3hvr-cvHvy76RO0_vF1l39423__EF2zuJAFVvIWWl3MKnhksddCPvYx9gv_1Crk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+SENSE+imaging+using+accurate+coil+sensitivity+maps+generated+by+a+global+magnitude-phase+fitting+method&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Ma%2C+Ya-Jun&rft.au=Liu%2C+Wentao&rft.au=Tang%2C+Xin&rft.au=Gao%2C+Jia-Hong&rft.date=2015-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=1&rft.spage=217&rft.epage=224&rft_id=info:doi/10.1002%2Fmrm.25375&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_ZWX9C4ZC_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon