Trientine and renin-angiotensin system blockade ameliorate progression of glomerular morphology in hypertensive experimental diabetic nephropathy

A comparison of the efficacy of the copper chelator, trientine, with combined renin angiotensin system (RAS) blockade on the progression of glomerular pathology in the diabetic (mREN‐2)27 rat is reported. Animals were treated for 2 months with trientine, combined RAS blockers, combined trientine plu...

Full description

Saved in:
Bibliographic Details
Published inPathology international Vol. 61; no. 11; pp. 652 - 661
Main Authors Moya-Olano, Leire, Milne, Helen Marie, Robinson, Jillian Margaret, Hill, Jonathan Vernon, Frampton, Christopher Miles, Abbott, Helen Frances, Turner, Rufus, Kettle, Anthony James, Endre, Zoltán Huba
Format Journal Article
LanguageEnglish
Published Melbourne, Australia Blackwell Publishing Asia 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A comparison of the efficacy of the copper chelator, trientine, with combined renin angiotensin system (RAS) blockade on the progression of glomerular pathology in the diabetic (mREN‐2)27 rat is reported. Animals were treated for 2 months with trientine, combined RAS blockers, combined trientine plus RAS blockers or none. Treatments began after inducing diabetes with streptozotocin. Physiological data were recorded monthly and light microscopic glomerular features were scored. Plasma allantoin and both plasma and renal protein carbonyls were measured as markers of oxidative stress. Trientine and RAS blockade decreased proteinuria and albuminuria and prevented an increase in creatinine clearance and kidney weight. Both reduced the diabetes‐related glomerular features of mesangiolysis and glomerular segmental hypocellularity and trientine prevented severe tuft‐to‐capsule adhesion and reduced tubularization. Hypertension‐related severe mesangial matrix expansion and global hypercellularity were increased by both treatments, which may reflect repair of mesangiolysis. Trientine reduced plasma but not renal protein carbonyls or plasma allantoin. In this model, trientine prevented the development of many diabetes‐specific features similarly to RAS blockade. Amelioration of oxidative stress and features commonly observed in human diabetic nephropathy (DN), support a diabetes‐related defect in copper (Cu) metabolism. The addition of CuII chelation may improve current DN therapy
Bibliography:ark:/67375/WNG-QRG7XM5K-9
istex:DEFBA3C4D8EE29958C4D63ACE2DD6A38C2D1CB20
ArticleID:PIN2721
Present address is that one appearing for correspondence, being different from that where the work was carried out.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1320-5463
1440-1827
DOI:10.1111/j.1440-1827.2011.02721.x