Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI

Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and M...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 46; no. 2; pp. 431 - 439
Main Authors Yildiz, Selda, Thyagaraj, Suraj, Jin, Ning, Zhong, Xiaodong, Heidari Pahlavian, Soroush, Martin, Bryn A., Loth, Francis, Oshinski, John, Sabra, Karim G.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2017
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.25591

Cover

Loading…
Abstract Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and Methods To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1‐minute RT‐PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath‐holding, and coughing. Conventional cardiac‐gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. Results In vitro studies demonstrating the accuracy of RT‐PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT‐PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. Conclusion RT‐PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. Level of Evidence: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431–439
AbstractList Purpose To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and Methods To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N=20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. Results In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42±0.02cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96±0.07cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c=0.14±0.27] and [r/c=0.40±0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27±1.40. Conclusion RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. Level of Evidence: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439
To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).PURPOSETo validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity.MATERIALS AND METHODSTo validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity.In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40.RESULTSIn vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40.RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing.CONCLUSIONRT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing.1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.LEVEL OF EVIDENCE1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.
To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.
Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and Methods To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1‐minute RT‐PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath‐holding, and coughing. Conventional cardiac‐gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. Results In vitro studies demonstrating the accuracy of RT‐PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT‐PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. Conclusion RT‐PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. Level of Evidence: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431–439
Author Sabra, Karim G.
Heidari Pahlavian, Soroush
Jin, Ning
Loth, Francis
Zhong, Xiaodong
Martin, Bryn A.
Oshinski, John
Yildiz, Selda
Thyagaraj, Suraj
Author_xml – sequence: 1
  givenname: Selda
  surname: Yildiz
  fullname: Yildiz, Selda
  email: yildiz@ohsu.edu
  organization: Georgia Institute of Technology
– sequence: 2
  givenname: Suraj
  surname: Thyagaraj
  fullname: Thyagaraj, Suraj
  organization: University of Akron
– sequence: 3
  givenname: Ning
  surname: Jin
  fullname: Jin, Ning
  organization: Siemens Healthcare
– sequence: 4
  givenname: Xiaodong
  surname: Zhong
  fullname: Zhong, Xiaodong
  organization: Emory University
– sequence: 5
  givenname: Soroush
  surname: Heidari Pahlavian
  fullname: Heidari Pahlavian, Soroush
  organization: University of Akron
– sequence: 6
  givenname: Bryn A.
  surname: Martin
  fullname: Martin, Bryn A.
  organization: University of Idaho
– sequence: 7
  givenname: Francis
  surname: Loth
  fullname: Loth, Francis
  organization: University of Akron
– sequence: 8
  givenname: John
  surname: Oshinski
  fullname: Oshinski, John
  organization: Emory University
– sequence: 9
  givenname: Karim G.
  surname: Sabra
  fullname: Sabra, Karim G.
  organization: Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28152239$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLHTEYhkNR6qXd9AeUgJsijOYyl2QpUm8o0tKuQyb5puaQyUyTGeTsXLn2N_aXNOcc3Yi4SvLleV94328PbYUhAEJfKDmihLDjRR_dEasqST-gXVoxVrBK1Fv5TipeUEGaHbSX0oIQImVZfUQ7TKwwLnfR449Zh8l1Sxf-4OkOsAudnyEYwEOHI6TRRT25IWAdLDY6WqcNHmef1tOE84-BCG0cMhq0x1nuLLbLoHtnEp7TyjmC9v8enibXAx7vdIL8MEOYok4Tvvl5-Qltd9on-Px87qPfZ99_nV4U17fnl6cn14Upc7yCGgKi66jmlDNJWk60kG0rREPLFjoJtmnK0rKGAbPAGylZaammoqzbum4I30ffNr5jHP7OkCbVu2TAex1gmJOioq4qKnKtGT14hS6GOeaEmZJUcMK5aDL19Zma2x6sGqPrdVyql4YzQDaAyQ2lCJ0yblp3l8M7ryhRqyWq1RLVeolZcvhK8uL6Jkw38L3zsHyHVFe5543mP8SWr_0
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119361
crossref_primary_10_1016_j_neuroimage_2022_119362
crossref_primary_10_1115_1_4044308
crossref_primary_10_1016_j_addr_2023_114949
crossref_primary_10_1038_s41598_022_06361_x
crossref_primary_10_1111_jsr_14029
crossref_primary_10_1186_s12987_020_00185_5
crossref_primary_10_1016_j_wneu_2024_08_085
crossref_primary_10_1016_j_neuroimage_2024_120988
crossref_primary_10_1002_jmri_28717
crossref_primary_10_1186_s12987_021_00282_z
crossref_primary_10_1186_s12987_018_0113_6
crossref_primary_10_2463_mrms_mp_2021_0126
crossref_primary_10_1115_1_4049788
crossref_primary_10_1186_s12987_019_0132_y
crossref_primary_10_1002_adsr_202300017
crossref_primary_10_1002_nbm_5013
crossref_primary_10_1017_jfm_2023_1018
crossref_primary_10_3389_fnins_2021_795749
crossref_primary_10_1186_s12987_024_00578_w
crossref_primary_10_1002_nbm_5132
crossref_primary_10_1038_s41393_018_0075_1
crossref_primary_10_3389_fnimg_2022_879098
crossref_primary_10_4103_ijoy_ijoy_113_23
crossref_primary_10_1186_s12987_022_00382_4
crossref_primary_10_1038_s41598_019_46055_5
crossref_primary_10_17816_brmma12336
crossref_primary_10_1007_s10915_025_02814_3
crossref_primary_10_1186_s12987_021_00296_7
crossref_primary_10_2176_nmc_ra_2018_0272
crossref_primary_10_3390_biology10070672
crossref_primary_10_1007_s12194_020_00560_9
crossref_primary_10_1002_mrm_27394
crossref_primary_10_1186_s12987_020_00206_3
crossref_primary_10_1186_s12987_017_0085_y
crossref_primary_10_1186_s12987_024_00520_0
crossref_primary_10_2176_nmc_oa_2021_0160
crossref_primary_10_1017_S0033291717003890
crossref_primary_10_1016_j_pneurobio_2017_05_002
crossref_primary_10_1016_j_wneu_2018_04_191
crossref_primary_10_1186_s12987_021_00246_3
crossref_primary_10_1186_s12987_022_00394_0
crossref_primary_10_1115_1_4062723
crossref_primary_10_1017_jfm_2020_463
crossref_primary_10_1371_journal_pone_0244090
crossref_primary_10_1177_0284185117740762
crossref_primary_10_1016_j_jbiomech_2019_04_030
crossref_primary_10_1007_s11517_023_02885_0
crossref_primary_10_1016_j_clinimag_2022_11_015
crossref_primary_10_1016_j_neuroimage_2020_116581
crossref_primary_10_1007_s00234_018_1995_3
crossref_primary_10_1038_s41598_022_15034_8
crossref_primary_10_3390_bios12060417
crossref_primary_10_1186_s12987_019_0130_0
crossref_primary_10_1146_annurev_fluid_120720_011638
crossref_primary_10_1212_WNL_0000000000201527
crossref_primary_10_3389_fneur_2022_931523
crossref_primary_10_1186_s12987_019_0164_3
crossref_primary_10_1111_jon_70000
crossref_primary_10_1186_s12987_024_00612_x
crossref_primary_10_1111_jnc_15458
crossref_primary_10_1002_jmri_26181
crossref_primary_10_1038_s41598_022_15918_9
crossref_primary_10_4103_jacs_jacs_42_23
crossref_primary_10_1007_s00701_018_3730_6
crossref_primary_10_1002_mrm_28657
crossref_primary_10_1186_s12987_024_00607_8
crossref_primary_10_1002_mrm_29108
crossref_primary_10_1016_j_addr_2021_03_002
crossref_primary_10_1016_j_nicl_2018_09_006
crossref_primary_10_1186_s12987_024_00556_2
crossref_primary_10_3174_ajnr_A7603
crossref_primary_10_1109_TBME_2017_2756995
crossref_primary_10_1186_s12987_022_00304_4
crossref_primary_10_1055_s_0041_1731981
crossref_primary_10_1038_s41598_020_73192_z
crossref_primary_10_1002_jmri_29040
crossref_primary_10_1016_j_jocn_2021_09_019
crossref_primary_10_1115_1_4040401
crossref_primary_10_1016_j_cmpb_2022_107209
crossref_primary_10_3389_fnhum_2021_737217
crossref_primary_10_3174_ajnr_A6958
crossref_primary_10_1002_nbm_5200
crossref_primary_10_1186_s12987_024_00587_9
crossref_primary_10_1088_1361_6579_acdb47
crossref_primary_10_1088_1361_6560_ac3fff
crossref_primary_10_3390_bios12080612
crossref_primary_10_1016_j_nbd_2022_105986
crossref_primary_10_1016_j_heliyon_2024_e37067
crossref_primary_10_1186_s12987_017_0074_1
crossref_primary_10_1186_s12987_018_0118_1
crossref_primary_10_2463_mrms_mp_2020_0085
crossref_primary_10_1002_mrm_28430
crossref_primary_10_3390_diagnostics10040241
crossref_primary_10_1177_0271678X20982388
crossref_primary_10_1186_s12917_018_1410_7
crossref_primary_10_1080_17425247_2019_1642870
crossref_primary_10_1371_journal_pone_0212239
crossref_primary_10_3389_fnagi_2024_1454282
crossref_primary_10_3389_fbioe_2022_1040517
crossref_primary_10_1002_mrm_29248
crossref_primary_10_1038_s41598_024_62374_8
crossref_primary_10_1016_j_brain_2024_100101
crossref_primary_10_2463_mrms_mp_2020_0121
crossref_primary_10_1002_mrm_27748
crossref_primary_10_1016_j_nic_2024_12_006
Cites_doi 10.1002/mrm.23273
10.1016/j.jcmg.2011.07.010
10.1002/jmri.20722
10.1179/016164111X12962202723805
10.1007/BF01411198
10.1089/acm.2009.0577
10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
10.1093/brain/99.2.331
10.1016/j.mri.2007.07.001
10.1523/JNEUROSCI.3246-14.2015
10.1002/jmri.24882
10.1007/BF02478090
10.1126/science.1241224
10.1148/radiology.183.2.1561340
10.1016/j.neuroimage.2015.07.073
10.1002/jmri.25160
10.1109/TBME.2008.2011647
10.1115/1.4029699
10.1038/jcbfm.2009.29
10.1371/journal.pone.0091888
10.1038/sj.jcbfm.9600462
10.1007/BF01407124
10.1148/radiol.2321030666
10.1186/2045-8118-10-36
10.1093/brain/108.2.439
10.1148/radiology.163.3.3575734
10.1038/jcbfm.2013.95
10.1371/journal.pone.0037502
10.1126/science.1240514
10.3174/ajnr.A4124
10.1002/jmri.20427
10.1126/scitranslmed.3003748
10.1002/mrm.10455
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.25591
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 439
ExternalDocumentID 28152239
10_1002_jmri_25591
JMRI25591
Genre article
Journal Article
GrantInformation_xml – fundername: Conquer Chiari
– fundername: American Syringomyelia & Chiari Alliance Project
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4591-1c0e8ff1a313290b30a89bb88714bef9ed7744d272e2de379924d1a1846b66703
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 00:03:19 EDT 2025
Fri Jul 25 12:19:28 EDT 2025
Wed Feb 19 02:44:18 EST 2025
Tue Jul 01 03:56:37 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:49:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CSF flow velocity
real-time phase contrast MRI
respiration
coughing
cerebrospinal fluid
cardiac
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4591-1c0e8ff1a313290b30a89bb88714bef9ed7744d272e2de379924d1a1846b66703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25591
PMID 28152239
PQID 1918303387
PQPubID 1006400
PageCount 9
ParticipantIDs proquest_miscellaneous_1865518100
proquest_journals_1918303387
pubmed_primary_28152239
crossref_citationtrail_10_1002_jmri_25591
crossref_primary_10_1002_jmri_25591
wiley_primary_10_1002_jmri_25591_JMRI25591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1987; 163
2015; 35
2015; 36
2010; 16
1992; 183
2015; 19
2012
2015; 122
1975; 13
2013; 342
2011; 33
2013; 340
1985; 108
2005; 22
2009; 29
2009; 56
2004; 232
1976; 99
2015; 137
2013; 33
2006; 24
2013; 10
2015; 42
2000; 11
1981; 58
2003; 24
2008; 26
1981; 59
2003; 49
2016
2014; 9
2012; 68
2012; 7
2012; 4
2012; 5
2007; 27
2016; 44
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Pahlavian SH (e_1_2_6_27_1) 2016
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Haughton VM (e_1_2_6_20_1) 2003; 24
e_1_2_6_21_1
Akay R (e_1_2_6_22_1) 2015; 19
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
Wang C (e_1_2_6_2_1) 2012
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: e91888
  year: 2014
  article-title: The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine
  publication-title: PLoS One
– volume: 13
  start-page: 861
  year: 1975
  end-page: 869
  article-title: Theoretical aspects of the attenuation of pressure pulses within cerebrospinal fluid pathways
  publication-title: Med Biol Eng
– start-page: 1
  year: 2012
  end-page: 37
– volume: 33
  start-page: 247
  year: 2011
  end-page: 260
  article-title: Cerebrospinal fluid hydrodynamics in type I Chiari malformation
  publication-title: Neurol Res
– volume: 44
  start-page: 463
  year: 2016
  end-page: 470
  article-title: Cerebrospinal fluid velocity amplitudes within the cerebral aqueduct in healthy children and patients with Chiari I malformation
  publication-title: J Magn Reson Imaging
– volume: 342
  start-page: 373
  year: 2013
  end-page: 377
  article-title: Sleep drives metabolite clearance from the adult brain
  publication-title: Science
– volume: 232
  start-page: 229
  year: 2004
  article-title: Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation
  publication-title: Radiology
– volume: 10
  start-page: 36
  year: 2013
  end-page: 44
  article-title: Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling
  publication-title: Fluids Barriers CNS
– volume: 22
  start-page: 591
  year: 2005
  end-page: 596
  article-title: Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies
  publication-title: J Magn Reson Imaging
– volume: 35
  start-page: 2485
  year: 2015
  end-page: 2491
  article-title: Inspiration is the major regulator of human CSF flow
  publication-title: J Neurosci
– volume: 36
  start-page: 831
  year: 2015
  end-page: 838
  article-title: CSF flow in the brain in the context of normal pressure hydrocephalus
  publication-title: AJNR Am J Neuroradiol
– volume: 26
  start-page: 198
  year: 2008
  end-page: 205
  article-title: The respiratory modulation of intracranial cerebrospinal fluid pulsation observed on dynamic echo planar images
  publication-title: Magn Reson Imaging
– volume: 137
  start-page: 0510021
  year: 2015
  end-page: 0510028
  article-title: Characterization of the discrepancies between four‐dimensional phase‐contrast magnetic resonance imaging and in‐silico simulations of cerebrospinal fluid dynamics
  publication-title: J Biomech Eng
– volume: 11
  start-page: 438
  year: 2000
  end-page: 444
  article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique
  publication-title: J Magn Reson Imaging
– volume: 16
  start-page: 1039
  year: 2010
  end-page: 1045
  article-title: Effect of slow abdominal breathing combined with biofeedback on blood pressure and heart rate variability in prehypertension
  publication-title: J Altern Complement Med
– volume: 163
  start-page: 793
  year: 1987
  end-page: 799
  article-title: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging
  publication-title: Radiology
– volume: 19
  start-page: 3475
  year: 2015
  end-page: 3479
  article-title: Evaluation of aqueductal CSF flow dynamics with phase contrast cine MR imaging in idiopathic intracranial hypertension patients: preliminary results
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 68
  start-page: 703
  year: 2012
  end-page: 710
  article-title: Shared velocity encoding: A method to improve the temporal resolution of phase‐contrast velocity measurements
  publication-title: Magn Reson Med
– volume: 4
  start-page: 147 ra111
  year: 2012
  article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid
  publication-title: Sci Transl Med
– volume: 33
  start-page: 1314
  year: 2013
  end-page: 1321
  article-title: Concomitant analysis of arterial, venous, and CSF flows using phase‐contrast MRI: a quantitative comparison between MS patients and healthy controls
  publication-title: J Cereb Blood Flow Metab
– volume: 42
  start-page: 1158
  year: 2015
  end-page: 1163
  article-title: MRI measurements of intracranial pressure in the upright posture: The effect of the hydrostatic pressure gradient
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 123
  year: 1981
  end-page: 142
  article-title: Simultaneous cerebral and spinal fluid pressure recordings. II
  publication-title: Acta Neurochir
– start-page: 1
  year: 2016
  end-page: 13
  article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation
  publication-title: Ann Biomed Eng
– volume: 99
  start-page: 331
  year: 1976
  end-page: 346
  article-title: Cerebrospinal fluid pressure changes in response to coughing
  publication-title: Brain
– volume: 24
  start-page: 995
  year: 2006
  end-page: 1004
  article-title: Brain hydrodynamics study by phase‐contrast magnetic resonance imaging and transcranial color Doppler
  publication-title: J Magn Reson Imaging
– volume: 58
  start-page: 167
  year: 1981
  end-page: 185
  article-title: Simultaneous cerebral and spinal fluid pressure recordings. I.Technique, physiology, and normal results
  publication-title: Acta Neurochir (Wien)
– volume: 49
  start-page: 934
  year: 2003
  end-page: 944
  article-title: PUBS: pulsatility‐based segmentation of lumens conducting non‐steady flow
  publication-title: Magn Reson Med
– volume: 122
  start-page: 281
  year: 2015
  end-page: 287
  article-title: Dynamics of respiratory and cardiac CSF motion revealed with real‐time simultaneous multi‐slice EPI velocity phase contrast imaging
  publication-title: NeuroImage
– volume: 7
  start-page: e37502
  year: 2012
  article-title: Age‐specific characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid dynamics
  publication-title: PLoS One
– volume: 29
  start-page: 1208
  year: 2009
  end-page: 1215
  article-title: A phase‐contrast MRI study of physiologic cerebral venous flow
  publication-title: J Cereb Blood Flow Metab
– volume: 108
  start-page: 439
  year: 1985
  end-page: 461
  article-title: Post‐traumatic cervical syringomyelia. Incidence, clinical presentation, electrophysiological studies, syrinx protein and results of conservative and operative treatment
  publication-title: Brain
– volume: 27
  start-page: 1563
  year: 2007
  end-page: 1572
  article-title: Aging effects on cerebral blood and cerebrospinal fluid flows
  publication-title: J Cereb Blood Flow Metab
– volume: 56
  start-page: 1765
  year: 2009
  end-page: 1768
  article-title: MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal
  publication-title: IEEE Trans Biomed Eng
– volume: 5
  start-page: 15
  year: 2012
  end-page: 24
  article-title: Simultaneous right and left heart real‐time, free‐breathing CMR flow quantification identifies constrictive physiology
  publication-title: JACC Cardiovasc Imaging
– volume: 24
  start-page: 169
  year: 2003
  end-page: 176
  article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants
  publication-title: AJNR Am J Neuroradiol
– volume: 340
  start-page: 1529
  year: 2013
  end-page: 1530
  article-title: Neuroscience. Garbage truck of the brain
  publication-title: Science
– volume: 183
  start-page: 395
  year: 1992
  end-page: 405
  article-title: Flow dynamics of cerebrospinal fluid: assessment with phase‐contrast velocity MR imaging performed with retrospective cardiac gating
  publication-title: Radiology
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.23273
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jcmg.2011.07.010
– start-page: 1
  volume-title: Cerebrospinal fluid: functions, composition and disorders
  year: 2012
  ident: e_1_2_6_2_1
– ident: e_1_2_6_10_1
  doi: 10.1002/jmri.20722
– ident: e_1_2_6_21_1
  doi: 10.1179/016164111X12962202723805
– ident: e_1_2_6_7_1
  doi: 10.1007/BF01411198
– ident: e_1_2_6_28_1
  doi: 10.1089/acm.2009.0577
– ident: e_1_2_6_15_1
  doi: 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
– ident: e_1_2_6_8_1
  doi: 10.1093/brain/99.2.331
– ident: e_1_2_6_16_1
  doi: 10.1016/j.mri.2007.07.001
– ident: e_1_2_6_17_1
  doi: 10.1523/JNEUROSCI.3246-14.2015
– ident: e_1_2_6_36_1
  doi: 10.1002/jmri.24882
– volume: 24
  start-page: 169
  year: 2003
  ident: e_1_2_6_20_1
  article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_31_1
  doi: 10.1007/BF02478090
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1241224
– ident: e_1_2_6_11_1
  doi: 10.1148/radiology.183.2.1561340
– ident: e_1_2_6_18_1
  doi: 10.1016/j.neuroimage.2015.07.073
– start-page: 1
  year: 2016
  ident: e_1_2_6_27_1
  article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation
  publication-title: Ann Biomed Eng
– ident: e_1_2_6_37_1
  doi: 10.1002/jmri.25160
– ident: e_1_2_6_12_1
  doi: 10.1109/TBME.2008.2011647
– ident: e_1_2_6_13_1
  doi: 10.1115/1.4029699
– ident: e_1_2_6_32_1
  doi: 10.1038/jcbfm.2009.29
– volume: 19
  start-page: 3475
  year: 2015
  ident: e_1_2_6_22_1
  article-title: Evaluation of aqueductal CSF flow dynamics with phase contrast cine MR imaging in idiopathic intracranial hypertension patients: preliminary results
  publication-title: Eur Rev Med Pharmacol Sci
– ident: e_1_2_6_26_1
  doi: 10.1371/journal.pone.0091888
– ident: e_1_2_6_35_1
  doi: 10.1038/sj.jcbfm.9600462
– ident: e_1_2_6_6_1
  doi: 10.1007/BF01407124
– ident: e_1_2_6_19_1
  doi: 10.1148/radiol.2321030666
– ident: e_1_2_6_30_1
  doi: 10.1186/2045-8118-10-36
– ident: e_1_2_6_38_1
  doi: 10.1093/brain/108.2.439
– ident: e_1_2_6_9_1
  doi: 10.1148/radiology.163.3.3575734
– ident: e_1_2_6_34_1
  doi: 10.1038/jcbfm.2013.95
– ident: e_1_2_6_33_1
  doi: 10.1371/journal.pone.0037502
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1240514
– ident: e_1_2_6_23_1
  doi: 10.3174/ajnr.A4124
– ident: e_1_2_6_14_1
  doi: 10.1002/jmri.20427
– ident: e_1_2_6_3_1
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_2_6_29_1
  doi: 10.1002/mrm.10455
SSID ssj0009945
Score 2.5539465
Snippet Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative...
To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions...
Purpose To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 431
SubjectTerms Adult
Breathing
cardiac
Cerebrospinal Fluid
Computational fluid dynamics
Computer Simulation
Contrast Media
coughing
CSF flow velocity
Female
Fluid dynamics
Foramen Magnum
Healthy Volunteers
Heart
Heart - diagnostic imaging
Heart diseases
Heart Rate
Humans
Hydrodynamics
Image Processing, Computer-Assisted
In vitro methods and tests
Magnetic Resonance Imaging
Male
Microscopy, Phase-Contrast
Middle Aged
Mimicry
NMR
Nuclear magnetic resonance
Phantoms, Imaging
Phase contrast
Pulsatile Flow
Real time
real‐time phase contrast MRI
Reproducibility of Results
Respiration
Signal Processing, Computer-Assisted
Software
Subarachnoid Space
Supine Position
Velocity
Waveforms
Young Adult
Title Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25591
https://www.ncbi.nlm.nih.gov/pubmed/28152239
https://www.proquest.com/docview/1918303387
https://www.proquest.com/docview/1865518100
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVRcgPIMFGQEF5CyTWJvYktcKkRVKi0SFZV6QZFfKQvb7Gp3c4ATJ878Rn5JZ5zHqoCQ4ObIThw7M55v4vE3AM8K56TQ1sZaS0phNq6wlIrYOum50blSIYhm8jY_OhXHZ-OzLXjZn4Vp-SGGH26kGWG9JgXXZrW_IQ39dLGcjggQk-9DwVqEiE423FFKhQzFiB94nMqkGLhJs_3NrVet0W8Q8ypiDSbn8AZ86F-2jTT5PGrWZmS__sLj-L-juQnXOyzKDlrh2YUtX9-CnUm3234bvr9rNMUS0UkohkCRTfuMJmxesWW3SY8flunaMRtkzbJFM-sihBjWWL9Er5uSk1BXePvUMfel1hdTu2IUdH-OD9Kzn99-UJZ7tviIVhUvQgS9Xq3Z5OTNHTg9fP3-1VHc5W2IrcABxKlNvKyqVBMtpEoMT1AOjMHlLBXGV8o7xJzCZUXmM-d5odAHdKlGXzM3eY5L0F3Yrue1vw9Mj0WBJtQjSOTCj42yUmvuubXKaZ-KCJ7336-0Hak55daYlS0dc1bSxJZhYiN4OrRdtFQef2y114tB2anzqkSnVqKt57KI4MlQjYpIuyu69vMG29ARX8RLSRLBvVZ8hm4yiTAp4yqCF0EI_tJ_eYwTG0oP_qXxQ7iWEeAIoYl7sL1eNv4RwqW1eRzU4hJz9hUS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIgEX3o9AASO4gJRtEnsT-4gQ1bZ0K1G1Um-RXykL2-xqd3OAEyfO_EZ-CTNONqsCQoJbojix4sx4vonH3wfwonBOCm1trLUkCbNhhUepiK2TnhudKxWKaMaH-ehE7J8OT7vaHNoL0_JD9D_cyDPCfE0OTj-kdzasoR_PF5MBIWJMfi6TpHfIqI427FFKBY1iRBA8TmVS9Oyk2c7m3ovx6DeQeRGzhqCze6NVVl0GrkKqNfk0aFZmYL_8wuT43-9zE653cJS9bu3nFlzy9W24Mu4W3O_At_eNpnIi2gzFECuyyVrUhM0qtujW6fHbMl07ZoO5WTZvpl2REMMr1i8w8SZ9EuoKb5845j7X-nxil4zq7s_wQXr64-t3Erpn8w8YWPEkFNHr5YqNj_buwsnu2-M3o7iTboitwBeIU5t4WVWpJmZIlRieoCkYgzNaKoyvlHcIO4XLisxnzvNCYRroUo3pZm7yHGehe7BVz2r_AJgeigKjqEecyIUfGmWl1txza5XTPhURvFx_wNJ2vOYkrzEtW0bmrKSBLcPARvC8bztv2Tz-2Gp7bQdl59HLEvNaieGeyyKCZ_1l9EVaYNG1nzXYhnb5ImRKkgjut_bTd5NJREoZVxG8Clbwl_7LfRzYcPTwXxo_hauj4_FBebB3-O4RXMsIf4RKxW3YWi0a_xjR08o8CT7yE6JfGS0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq4AOXVQEuN4AJStknsTWyJS0W7agtbQUWlXlDkV2Bhm13tbg5w4sS5v7G_pGPnsSogJLg5shPHzoznm3j8DcDzzBjOpNahlNylMOsXWIpZqA23VMlUCB9EMzxOD07Z0Vn_bAVetWdhan6I7oeb0wy_XjsFn5piZ0ka-uV8Nuo5QIy-zw2WRtzJ9N7JkjxKCJ-iGAEEDWMeZR05abKzvPe6OfoNY16HrN7mDG7Dx_Zt61CTr71qoXr6-y9Ejv87nDtwqwGjZLeWnnVYseVdWBs22-334Of7SrpgIncUiiBSJKM2pQmZFGTW7NLjlyWyNER7YdNkWo2bECGCNdrO0O122UlcV3j7yBDzrZTnIz0nLur-Ez5Iji9_XLg092T6Gc0qXvgQejlfkOHJ4X04Hex_eH0QNokbQs1wAGGsI8uLIpaOF1JEikYoCErhehYzZQthDYJOZpIssYmxNBPoBJpYorOZqjTFNegBrJaT0m4AkX2WoQ21iBIps30lNJeSWqq1MNLGLIAX7ffLdcNq7pJrjPOajznJ3cTmfmIDeNa1ndZcHn9stdmKQd7o8zxHr5ajsac8C-BpV42a6LZXZGknFbZxZ3wRMEVRAA9r8em6STjipISKAF56IfhL__kRTqwvPfqXxtuw9m5vkL89PH7zGG4mDnz4MMVNWF3MKruF0GmhnngNuQJvFBfl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+influence+of+respiration+and+cardiac+pulsations+on+cerebrospinal+fluid+dynamics+using+real%E2%80%90time+phase%E2%80%90contrast+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Yildiz%2C+Selda&rft.au=Thyagaraj%2C+Suraj&rft.au=Jin%2C+Ning&rft.au=Zhong%2C+Xiaodong&rft.date=2017-08-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=46&rft.issue=2&rft.spage=431&rft.epage=439&rft_id=info:doi/10.1002%2Fjmri.25591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_25591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon