Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI
Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and M...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 46; no. 2; pp. 431 - 439 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.25591 |
Cover
Loading…
Abstract | Purpose
To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).
Materials and Methods
To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1‐minute RT‐PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath‐holding, and coughing. Conventional cardiac‐gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity.
Results
In vitro studies demonstrating the accuracy of RT‐PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT‐PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40.
Conclusion
RT‐PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing.
Level of Evidence: 1
Technical Efficacy: Stage 1
J. MAGN. RESON. IMAGING 2017;46:431–439 |
---|---|
AbstractList | Purpose To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and Methods To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N=20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. Results In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42±0.02cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96±0.07cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c=0.14±0.27] and [r/c=0.40±0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27±1.40. Conclusion RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. Level of Evidence: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439 To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).PURPOSETo validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM).To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity.MATERIALS AND METHODSTo validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity.In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40.RESULTSIn vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40.RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing.CONCLUSIONRT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing.1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439.LEVEL OF EVIDENCE1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1-minute RT-PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath-holding, and coughing. Conventional cardiac-gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. In vitro studies demonstrating the accuracy of RT-PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT-PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. RT-PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431-439. Purpose To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions of respiration and cardiac pulsations on cerebrospinal fluid (CSF) velocity at the level of the foramen magnum (FM). Materials and Methods To validate the 3T MRI techniques, in vitro studies used a realistic model of the spinal subarachnoid space driven by pulsatile flow waveforms mimicking the respiratory and cardiac components of CSF flow. Subsequently, CSF flow was measured continuously during 1‐minute RT‐PCMRI acquisitions at the FM while healthy subjects (N = 20) performed natural breathing, deep breathing, breath‐holding, and coughing. Conventional cardiac‐gated PCMRI was obtained for comparison. A frequency domain power ratio analysis determined the relative contribution of respiration versus cardiac ([r/c]) components of CSF velocity. Results In vitro studies demonstrating the accuracy of RT‐PCMRI within 5% of input values showed that conventional PCMRI measures only the cardiac component of CSF velocity (0.42 ± 0.02 cm/s), averages out respiratory effects, and underestimates the magnitude of CSF velocity (0.96 ± 0.07 cm/s). In vivo RT‐PCMRI measurements indicated the ratio of respiratory to cardiac velocity pulsations averaged over all subjects as [r/c = 0.14 ± 0.27] and [r/c = 0.40 ± 0.47] for natural and deep breathing, respectively. During coughing, the peak CSF velocity increased by a factor of 2.27 ± 1.40. Conclusion RT‐PCMRI can noninvasively measure instantaneous CSF velocity driven by cardiac pulsations, respiration, and coughing in real time. A comparable contribution of respiration and cardiac pulsations on CSF velocity was found during deep breathing but not during natural breathing. Level of Evidence: 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:431–439 |
Author | Sabra, Karim G. Heidari Pahlavian, Soroush Jin, Ning Loth, Francis Zhong, Xiaodong Martin, Bryn A. Oshinski, John Yildiz, Selda Thyagaraj, Suraj |
Author_xml | – sequence: 1 givenname: Selda surname: Yildiz fullname: Yildiz, Selda email: yildiz@ohsu.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Suraj surname: Thyagaraj fullname: Thyagaraj, Suraj organization: University of Akron – sequence: 3 givenname: Ning surname: Jin fullname: Jin, Ning organization: Siemens Healthcare – sequence: 4 givenname: Xiaodong surname: Zhong fullname: Zhong, Xiaodong organization: Emory University – sequence: 5 givenname: Soroush surname: Heidari Pahlavian fullname: Heidari Pahlavian, Soroush organization: University of Akron – sequence: 6 givenname: Bryn A. surname: Martin fullname: Martin, Bryn A. organization: University of Idaho – sequence: 7 givenname: Francis surname: Loth fullname: Loth, Francis organization: University of Akron – sequence: 8 givenname: John surname: Oshinski fullname: Oshinski, John organization: Emory University – sequence: 9 givenname: Karim G. surname: Sabra fullname: Sabra, Karim G. organization: Georgia Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28152239$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLHTEYhkNR6qXd9AeUgJsijOYyl2QpUm8o0tKuQyb5puaQyUyTGeTsXLn2N_aXNOcc3Yi4SvLleV94328PbYUhAEJfKDmihLDjRR_dEasqST-gXVoxVrBK1Fv5TipeUEGaHbSX0oIQImVZfUQ7TKwwLnfR449Zh8l1Sxf-4OkOsAudnyEYwEOHI6TRRT25IWAdLDY6WqcNHmef1tOE84-BCG0cMhq0x1nuLLbLoHtnEp7TyjmC9v8enibXAx7vdIL8MEOYok4Tvvl5-Qltd9on-Px87qPfZ99_nV4U17fnl6cn14Upc7yCGgKi66jmlDNJWk60kG0rREPLFjoJtmnK0rKGAbPAGylZaammoqzbum4I30ffNr5jHP7OkCbVu2TAex1gmJOioq4qKnKtGT14hS6GOeaEmZJUcMK5aDL19Zma2x6sGqPrdVyql4YzQDaAyQ2lCJ0yblp3l8M7ryhRqyWq1RLVeolZcvhK8uL6Jkw38L3zsHyHVFe5543mP8SWr_0 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119361 crossref_primary_10_1016_j_neuroimage_2022_119362 crossref_primary_10_1115_1_4044308 crossref_primary_10_1016_j_addr_2023_114949 crossref_primary_10_1038_s41598_022_06361_x crossref_primary_10_1111_jsr_14029 crossref_primary_10_1186_s12987_020_00185_5 crossref_primary_10_1016_j_wneu_2024_08_085 crossref_primary_10_1016_j_neuroimage_2024_120988 crossref_primary_10_1002_jmri_28717 crossref_primary_10_1186_s12987_021_00282_z crossref_primary_10_1186_s12987_018_0113_6 crossref_primary_10_2463_mrms_mp_2021_0126 crossref_primary_10_1115_1_4049788 crossref_primary_10_1186_s12987_019_0132_y crossref_primary_10_1002_adsr_202300017 crossref_primary_10_1002_nbm_5013 crossref_primary_10_1017_jfm_2023_1018 crossref_primary_10_3389_fnins_2021_795749 crossref_primary_10_1186_s12987_024_00578_w crossref_primary_10_1002_nbm_5132 crossref_primary_10_1038_s41393_018_0075_1 crossref_primary_10_3389_fnimg_2022_879098 crossref_primary_10_4103_ijoy_ijoy_113_23 crossref_primary_10_1186_s12987_022_00382_4 crossref_primary_10_1038_s41598_019_46055_5 crossref_primary_10_17816_brmma12336 crossref_primary_10_1007_s10915_025_02814_3 crossref_primary_10_1186_s12987_021_00296_7 crossref_primary_10_2176_nmc_ra_2018_0272 crossref_primary_10_3390_biology10070672 crossref_primary_10_1007_s12194_020_00560_9 crossref_primary_10_1002_mrm_27394 crossref_primary_10_1186_s12987_020_00206_3 crossref_primary_10_1186_s12987_017_0085_y crossref_primary_10_1186_s12987_024_00520_0 crossref_primary_10_2176_nmc_oa_2021_0160 crossref_primary_10_1017_S0033291717003890 crossref_primary_10_1016_j_pneurobio_2017_05_002 crossref_primary_10_1016_j_wneu_2018_04_191 crossref_primary_10_1186_s12987_021_00246_3 crossref_primary_10_1186_s12987_022_00394_0 crossref_primary_10_1115_1_4062723 crossref_primary_10_1017_jfm_2020_463 crossref_primary_10_1371_journal_pone_0244090 crossref_primary_10_1177_0284185117740762 crossref_primary_10_1016_j_jbiomech_2019_04_030 crossref_primary_10_1007_s11517_023_02885_0 crossref_primary_10_1016_j_clinimag_2022_11_015 crossref_primary_10_1016_j_neuroimage_2020_116581 crossref_primary_10_1007_s00234_018_1995_3 crossref_primary_10_1038_s41598_022_15034_8 crossref_primary_10_3390_bios12060417 crossref_primary_10_1186_s12987_019_0130_0 crossref_primary_10_1146_annurev_fluid_120720_011638 crossref_primary_10_1212_WNL_0000000000201527 crossref_primary_10_3389_fneur_2022_931523 crossref_primary_10_1186_s12987_019_0164_3 crossref_primary_10_1111_jon_70000 crossref_primary_10_1186_s12987_024_00612_x crossref_primary_10_1111_jnc_15458 crossref_primary_10_1002_jmri_26181 crossref_primary_10_1038_s41598_022_15918_9 crossref_primary_10_4103_jacs_jacs_42_23 crossref_primary_10_1007_s00701_018_3730_6 crossref_primary_10_1002_mrm_28657 crossref_primary_10_1186_s12987_024_00607_8 crossref_primary_10_1002_mrm_29108 crossref_primary_10_1016_j_addr_2021_03_002 crossref_primary_10_1016_j_nicl_2018_09_006 crossref_primary_10_1186_s12987_024_00556_2 crossref_primary_10_3174_ajnr_A7603 crossref_primary_10_1109_TBME_2017_2756995 crossref_primary_10_1186_s12987_022_00304_4 crossref_primary_10_1055_s_0041_1731981 crossref_primary_10_1038_s41598_020_73192_z crossref_primary_10_1002_jmri_29040 crossref_primary_10_1016_j_jocn_2021_09_019 crossref_primary_10_1115_1_4040401 crossref_primary_10_1016_j_cmpb_2022_107209 crossref_primary_10_3389_fnhum_2021_737217 crossref_primary_10_3174_ajnr_A6958 crossref_primary_10_1002_nbm_5200 crossref_primary_10_1186_s12987_024_00587_9 crossref_primary_10_1088_1361_6579_acdb47 crossref_primary_10_1088_1361_6560_ac3fff crossref_primary_10_3390_bios12080612 crossref_primary_10_1016_j_nbd_2022_105986 crossref_primary_10_1016_j_heliyon_2024_e37067 crossref_primary_10_1186_s12987_017_0074_1 crossref_primary_10_1186_s12987_018_0118_1 crossref_primary_10_2463_mrms_mp_2020_0085 crossref_primary_10_1002_mrm_28430 crossref_primary_10_3390_diagnostics10040241 crossref_primary_10_1177_0271678X20982388 crossref_primary_10_1186_s12917_018_1410_7 crossref_primary_10_1080_17425247_2019_1642870 crossref_primary_10_1371_journal_pone_0212239 crossref_primary_10_3389_fnagi_2024_1454282 crossref_primary_10_3389_fbioe_2022_1040517 crossref_primary_10_1002_mrm_29248 crossref_primary_10_1038_s41598_024_62374_8 crossref_primary_10_1016_j_brain_2024_100101 crossref_primary_10_2463_mrms_mp_2020_0121 crossref_primary_10_1002_mrm_27748 crossref_primary_10_1016_j_nic_2024_12_006 |
Cites_doi | 10.1002/mrm.23273 10.1016/j.jcmg.2011.07.010 10.1002/jmri.20722 10.1179/016164111X12962202723805 10.1007/BF01411198 10.1089/acm.2009.0577 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O 10.1093/brain/99.2.331 10.1016/j.mri.2007.07.001 10.1523/JNEUROSCI.3246-14.2015 10.1002/jmri.24882 10.1007/BF02478090 10.1126/science.1241224 10.1148/radiology.183.2.1561340 10.1016/j.neuroimage.2015.07.073 10.1002/jmri.25160 10.1109/TBME.2008.2011647 10.1115/1.4029699 10.1038/jcbfm.2009.29 10.1371/journal.pone.0091888 10.1038/sj.jcbfm.9600462 10.1007/BF01407124 10.1148/radiol.2321030666 10.1186/2045-8118-10-36 10.1093/brain/108.2.439 10.1148/radiology.163.3.3575734 10.1038/jcbfm.2013.95 10.1371/journal.pone.0037502 10.1126/science.1240514 10.3174/ajnr.A4124 10.1002/jmri.20427 10.1126/scitranslmed.3003748 10.1002/mrm.10455 |
ContentType | Journal Article |
Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.25591 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 439 |
ExternalDocumentID | 28152239 10_1002_jmri_25591 JMRI25591 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Conquer Chiari – fundername: American Syringomyelia & Chiari Alliance Project |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4591-1c0e8ff1a313290b30a89bb88714bef9ed7744d272e2de379924d1a1846b66703 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 00:03:19 EDT 2025 Fri Jul 25 12:19:28 EDT 2025 Wed Feb 19 02:44:18 EST 2025 Tue Jul 01 03:56:37 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:49:52 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CSF flow velocity real-time phase contrast MRI respiration coughing cerebrospinal fluid cardiac |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4591-1c0e8ff1a313290b30a89bb88714bef9ed7744d272e2de379924d1a1846b66703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25591 |
PMID | 28152239 |
PQID | 1918303387 |
PQPubID | 1006400 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1865518100 proquest_journals_1918303387 pubmed_primary_28152239 crossref_citationtrail_10_1002_jmri_25591 crossref_primary_10_1002_jmri_25591 wiley_primary_10_1002_jmri_25591_JMRI25591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1987; 163 2015; 35 2015; 36 2010; 16 1992; 183 2015; 19 2012 2015; 122 1975; 13 2013; 342 2011; 33 2013; 340 1985; 108 2005; 22 2009; 29 2009; 56 2004; 232 1976; 99 2015; 137 2013; 33 2006; 24 2013; 10 2015; 42 2000; 11 1981; 58 2003; 24 2008; 26 1981; 59 2003; 49 2016 2014; 9 2012; 68 2012; 7 2012; 4 2012; 5 2007; 27 2016; 44 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Pahlavian SH (e_1_2_6_27_1) 2016 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Haughton VM (e_1_2_6_20_1) 2003; 24 e_1_2_6_21_1 Akay R (e_1_2_6_22_1) 2015; 19 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 Wang C (e_1_2_6_2_1) 2012 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_26_1 |
References_xml | – volume: 9 start-page: e91888 year: 2014 article-title: The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine publication-title: PLoS One – volume: 13 start-page: 861 year: 1975 end-page: 869 article-title: Theoretical aspects of the attenuation of pressure pulses within cerebrospinal fluid pathways publication-title: Med Biol Eng – start-page: 1 year: 2012 end-page: 37 – volume: 33 start-page: 247 year: 2011 end-page: 260 article-title: Cerebrospinal fluid hydrodynamics in type I Chiari malformation publication-title: Neurol Res – volume: 44 start-page: 463 year: 2016 end-page: 470 article-title: Cerebrospinal fluid velocity amplitudes within the cerebral aqueduct in healthy children and patients with Chiari I malformation publication-title: J Magn Reson Imaging – volume: 342 start-page: 373 year: 2013 end-page: 377 article-title: Sleep drives metabolite clearance from the adult brain publication-title: Science – volume: 232 start-page: 229 year: 2004 article-title: Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation publication-title: Radiology – volume: 10 start-page: 36 year: 2013 end-page: 44 article-title: Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling publication-title: Fluids Barriers CNS – volume: 22 start-page: 591 year: 2005 end-page: 596 article-title: Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies publication-title: J Magn Reson Imaging – volume: 35 start-page: 2485 year: 2015 end-page: 2491 article-title: Inspiration is the major regulator of human CSF flow publication-title: J Neurosci – volume: 36 start-page: 831 year: 2015 end-page: 838 article-title: CSF flow in the brain in the context of normal pressure hydrocephalus publication-title: AJNR Am J Neuroradiol – volume: 26 start-page: 198 year: 2008 end-page: 205 article-title: The respiratory modulation of intracranial cerebrospinal fluid pulsation observed on dynamic echo planar images publication-title: Magn Reson Imaging – volume: 137 start-page: 0510021 year: 2015 end-page: 0510028 article-title: Characterization of the discrepancies between four‐dimensional phase‐contrast magnetic resonance imaging and in‐silico simulations of cerebrospinal fluid dynamics publication-title: J Biomech Eng – volume: 11 start-page: 438 year: 2000 end-page: 444 article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique publication-title: J Magn Reson Imaging – volume: 16 start-page: 1039 year: 2010 end-page: 1045 article-title: Effect of slow abdominal breathing combined with biofeedback on blood pressure and heart rate variability in prehypertension publication-title: J Altern Complement Med – volume: 163 start-page: 793 year: 1987 end-page: 799 article-title: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging publication-title: Radiology – volume: 19 start-page: 3475 year: 2015 end-page: 3479 article-title: Evaluation of aqueductal CSF flow dynamics with phase contrast cine MR imaging in idiopathic intracranial hypertension patients: preliminary results publication-title: Eur Rev Med Pharmacol Sci – volume: 68 start-page: 703 year: 2012 end-page: 710 article-title: Shared velocity encoding: A method to improve the temporal resolution of phase‐contrast velocity measurements publication-title: Magn Reson Med – volume: 4 start-page: 147 ra111 year: 2012 article-title: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid publication-title: Sci Transl Med – volume: 33 start-page: 1314 year: 2013 end-page: 1321 article-title: Concomitant analysis of arterial, venous, and CSF flows using phase‐contrast MRI: a quantitative comparison between MS patients and healthy controls publication-title: J Cereb Blood Flow Metab – volume: 42 start-page: 1158 year: 2015 end-page: 1163 article-title: MRI measurements of intracranial pressure in the upright posture: The effect of the hydrostatic pressure gradient publication-title: J Magn Reson Imaging – volume: 59 start-page: 123 year: 1981 end-page: 142 article-title: Simultaneous cerebral and spinal fluid pressure recordings. II publication-title: Acta Neurochir – start-page: 1 year: 2016 end-page: 13 article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation publication-title: Ann Biomed Eng – volume: 99 start-page: 331 year: 1976 end-page: 346 article-title: Cerebrospinal fluid pressure changes in response to coughing publication-title: Brain – volume: 24 start-page: 995 year: 2006 end-page: 1004 article-title: Brain hydrodynamics study by phase‐contrast magnetic resonance imaging and transcranial color Doppler publication-title: J Magn Reson Imaging – volume: 58 start-page: 167 year: 1981 end-page: 185 article-title: Simultaneous cerebral and spinal fluid pressure recordings. I.Technique, physiology, and normal results publication-title: Acta Neurochir (Wien) – volume: 49 start-page: 934 year: 2003 end-page: 944 article-title: PUBS: pulsatility‐based segmentation of lumens conducting non‐steady flow publication-title: Magn Reson Med – volume: 122 start-page: 281 year: 2015 end-page: 287 article-title: Dynamics of respiratory and cardiac CSF motion revealed with real‐time simultaneous multi‐slice EPI velocity phase contrast imaging publication-title: NeuroImage – volume: 7 start-page: e37502 year: 2012 article-title: Age‐specific characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid dynamics publication-title: PLoS One – volume: 29 start-page: 1208 year: 2009 end-page: 1215 article-title: A phase‐contrast MRI study of physiologic cerebral venous flow publication-title: J Cereb Blood Flow Metab – volume: 108 start-page: 439 year: 1985 end-page: 461 article-title: Post‐traumatic cervical syringomyelia. Incidence, clinical presentation, electrophysiological studies, syrinx protein and results of conservative and operative treatment publication-title: Brain – volume: 27 start-page: 1563 year: 2007 end-page: 1572 article-title: Aging effects on cerebral blood and cerebrospinal fluid flows publication-title: J Cereb Blood Flow Metab – volume: 56 start-page: 1765 year: 2009 end-page: 1768 article-title: MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal publication-title: IEEE Trans Biomed Eng – volume: 5 start-page: 15 year: 2012 end-page: 24 article-title: Simultaneous right and left heart real‐time, free‐breathing CMR flow quantification identifies constrictive physiology publication-title: JACC Cardiovasc Imaging – volume: 24 start-page: 169 year: 2003 end-page: 176 article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants publication-title: AJNR Am J Neuroradiol – volume: 340 start-page: 1529 year: 2013 end-page: 1530 article-title: Neuroscience. Garbage truck of the brain publication-title: Science – volume: 183 start-page: 395 year: 1992 end-page: 405 article-title: Flow dynamics of cerebrospinal fluid: assessment with phase‐contrast velocity MR imaging performed with retrospective cardiac gating publication-title: Radiology – ident: e_1_2_6_24_1 doi: 10.1002/mrm.23273 – ident: e_1_2_6_25_1 doi: 10.1016/j.jcmg.2011.07.010 – start-page: 1 volume-title: Cerebrospinal fluid: functions, composition and disorders year: 2012 ident: e_1_2_6_2_1 – ident: e_1_2_6_10_1 doi: 10.1002/jmri.20722 – ident: e_1_2_6_21_1 doi: 10.1179/016164111X12962202723805 – ident: e_1_2_6_7_1 doi: 10.1007/BF01411198 – ident: e_1_2_6_28_1 doi: 10.1089/acm.2009.0577 – ident: e_1_2_6_15_1 doi: 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O – ident: e_1_2_6_8_1 doi: 10.1093/brain/99.2.331 – ident: e_1_2_6_16_1 doi: 10.1016/j.mri.2007.07.001 – ident: e_1_2_6_17_1 doi: 10.1523/JNEUROSCI.3246-14.2015 – ident: e_1_2_6_36_1 doi: 10.1002/jmri.24882 – volume: 24 start-page: 169 year: 2003 ident: e_1_2_6_20_1 article-title: Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_31_1 doi: 10.1007/BF02478090 – ident: e_1_2_6_5_1 doi: 10.1126/science.1241224 – ident: e_1_2_6_11_1 doi: 10.1148/radiology.183.2.1561340 – ident: e_1_2_6_18_1 doi: 10.1016/j.neuroimage.2015.07.073 – start-page: 1 year: 2016 ident: e_1_2_6_27_1 article-title: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation publication-title: Ann Biomed Eng – ident: e_1_2_6_37_1 doi: 10.1002/jmri.25160 – ident: e_1_2_6_12_1 doi: 10.1109/TBME.2008.2011647 – ident: e_1_2_6_13_1 doi: 10.1115/1.4029699 – ident: e_1_2_6_32_1 doi: 10.1038/jcbfm.2009.29 – volume: 19 start-page: 3475 year: 2015 ident: e_1_2_6_22_1 article-title: Evaluation of aqueductal CSF flow dynamics with phase contrast cine MR imaging in idiopathic intracranial hypertension patients: preliminary results publication-title: Eur Rev Med Pharmacol Sci – ident: e_1_2_6_26_1 doi: 10.1371/journal.pone.0091888 – ident: e_1_2_6_35_1 doi: 10.1038/sj.jcbfm.9600462 – ident: e_1_2_6_6_1 doi: 10.1007/BF01407124 – ident: e_1_2_6_19_1 doi: 10.1148/radiol.2321030666 – ident: e_1_2_6_30_1 doi: 10.1186/2045-8118-10-36 – ident: e_1_2_6_38_1 doi: 10.1093/brain/108.2.439 – ident: e_1_2_6_9_1 doi: 10.1148/radiology.163.3.3575734 – ident: e_1_2_6_34_1 doi: 10.1038/jcbfm.2013.95 – ident: e_1_2_6_33_1 doi: 10.1371/journal.pone.0037502 – ident: e_1_2_6_4_1 doi: 10.1126/science.1240514 – ident: e_1_2_6_23_1 doi: 10.3174/ajnr.A4124 – ident: e_1_2_6_14_1 doi: 10.1002/jmri.20427 – ident: e_1_2_6_3_1 doi: 10.1126/scitranslmed.3003748 – ident: e_1_2_6_29_1 doi: 10.1002/mrm.10455 |
SSID | ssj0009945 |
Score | 2.5539465 |
Snippet | Purpose
To validate a real‐time phase contrast magnetic resonance imaging (RT‐PCMRI) sequence in a controlled phantom model, and to quantify the relative... To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative contributions... Purpose To validate a real-time phase contrast magnetic resonance imaging (RT-PCMRI) sequence in a controlled phantom model, and to quantify the relative... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 431 |
SubjectTerms | Adult Breathing cardiac Cerebrospinal Fluid Computational fluid dynamics Computer Simulation Contrast Media coughing CSF flow velocity Female Fluid dynamics Foramen Magnum Healthy Volunteers Heart Heart - diagnostic imaging Heart diseases Heart Rate Humans Hydrodynamics Image Processing, Computer-Assisted In vitro methods and tests Magnetic Resonance Imaging Male Microscopy, Phase-Contrast Middle Aged Mimicry NMR Nuclear magnetic resonance Phantoms, Imaging Phase contrast Pulsatile Flow Real time real‐time phase contrast MRI Reproducibility of Results Respiration Signal Processing, Computer-Assisted Software Subarachnoid Space Supine Position Velocity Waveforms Young Adult |
Title | Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25591 https://www.ncbi.nlm.nih.gov/pubmed/28152239 https://www.proquest.com/docview/1918303387 https://www.proquest.com/docview/1865518100 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVRcgPIMFGQEF5CyTWJvYktcKkRVKi0SFZV6QZFfKQvb7Gp3c4ATJ878Rn5JZ5zHqoCQ4ObIThw7M55v4vE3AM8K56TQ1sZaS0phNq6wlIrYOum50blSIYhm8jY_OhXHZ-OzLXjZn4Vp-SGGH26kGWG9JgXXZrW_IQ39dLGcjggQk-9DwVqEiE423FFKhQzFiB94nMqkGLhJs_3NrVet0W8Q8ypiDSbn8AZ86F-2jTT5PGrWZmS__sLj-L-juQnXOyzKDlrh2YUtX9-CnUm3234bvr9rNMUS0UkohkCRTfuMJmxesWW3SY8flunaMRtkzbJFM-sihBjWWL9Er5uSk1BXePvUMfel1hdTu2IUdH-OD9Kzn99-UJZ7tviIVhUvQgS9Xq3Z5OTNHTg9fP3-1VHc5W2IrcABxKlNvKyqVBMtpEoMT1AOjMHlLBXGV8o7xJzCZUXmM-d5odAHdKlGXzM3eY5L0F3Yrue1vw9Mj0WBJtQjSOTCj42yUmvuubXKaZ-KCJ7336-0Hak55daYlS0dc1bSxJZhYiN4OrRdtFQef2y114tB2anzqkSnVqKt57KI4MlQjYpIuyu69vMG29ARX8RLSRLBvVZ8hm4yiTAp4yqCF0EI_tJ_eYwTG0oP_qXxQ7iWEeAIoYl7sL1eNv4RwqW1eRzU4hJz9hUS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIgEX3o9AASO4gJRtEnsT-4gQ1bZ0K1G1Um-RXykL2-xqd3OAEyfO_EZ-CTNONqsCQoJbojix4sx4vonH3wfwonBOCm1trLUkCbNhhUepiK2TnhudKxWKaMaH-ehE7J8OT7vaHNoL0_JD9D_cyDPCfE0OTj-kdzasoR_PF5MBIWJMfi6TpHfIqI427FFKBY1iRBA8TmVS9Oyk2c7m3ovx6DeQeRGzhqCze6NVVl0GrkKqNfk0aFZmYL_8wuT43-9zE653cJS9bu3nFlzy9W24Mu4W3O_At_eNpnIi2gzFECuyyVrUhM0qtujW6fHbMl07ZoO5WTZvpl2REMMr1i8w8SZ9EuoKb5845j7X-nxil4zq7s_wQXr64-t3Erpn8w8YWPEkFNHr5YqNj_buwsnu2-M3o7iTboitwBeIU5t4WVWpJmZIlRieoCkYgzNaKoyvlHcIO4XLisxnzvNCYRroUo3pZm7yHGehe7BVz2r_AJgeigKjqEecyIUfGmWl1txza5XTPhURvFx_wNJ2vOYkrzEtW0bmrKSBLcPARvC8bztv2Tz-2Gp7bQdl59HLEvNaieGeyyKCZ_1l9EVaYNG1nzXYhnb5ImRKkgjut_bTd5NJREoZVxG8Clbwl_7LfRzYcPTwXxo_hauj4_FBebB3-O4RXMsIf4RKxW3YWi0a_xjR08o8CT7yE6JfGS0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq4AOXVQEuN4AJStknsTWyJS0W7agtbQUWlXlDkV2Bhm13tbg5w4sS5v7G_pGPnsSogJLg5shPHzoznm3j8DcDzzBjOpNahlNylMOsXWIpZqA23VMlUCB9EMzxOD07Z0Vn_bAVetWdhan6I7oeb0wy_XjsFn5piZ0ka-uV8Nuo5QIy-zw2WRtzJ9N7JkjxKCJ-iGAEEDWMeZR05abKzvPe6OfoNY16HrN7mDG7Dx_Zt61CTr71qoXr6-y9Ejv87nDtwqwGjZLeWnnVYseVdWBs22-334Of7SrpgIncUiiBSJKM2pQmZFGTW7NLjlyWyNER7YdNkWo2bECGCNdrO0O122UlcV3j7yBDzrZTnIz0nLur-Ez5Iji9_XLg092T6Gc0qXvgQejlfkOHJ4X04Hex_eH0QNokbQs1wAGGsI8uLIpaOF1JEikYoCErhehYzZQthDYJOZpIssYmxNBPoBJpYorOZqjTFNegBrJaT0m4AkX2WoQ21iBIps30lNJeSWqq1MNLGLIAX7ffLdcNq7pJrjPOajznJ3cTmfmIDeNa1ndZcHn9stdmKQd7o8zxHr5ajsac8C-BpV42a6LZXZGknFbZxZ3wRMEVRAA9r8em6STjipISKAF56IfhL__kRTqwvPfqXxtuw9m5vkL89PH7zGG4mDnz4MMVNWF3MKruF0GmhnngNuQJvFBfl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+influence+of+respiration+and+cardiac+pulsations+on+cerebrospinal+fluid+dynamics+using+real%E2%80%90time+phase%E2%80%90contrast+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Yildiz%2C+Selda&rft.au=Thyagaraj%2C+Suraj&rft.au=Jin%2C+Ning&rft.au=Zhong%2C+Xiaodong&rft.date=2017-08-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=46&rft.issue=2&rft.spage=431&rft.epage=439&rft_id=info:doi/10.1002%2Fjmri.25591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_25591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |