Multi Self-Healable UV Shielding Polyurethane/CeO2 Protective Coating: The Effect of Low-Molecular-Weight Polyols

We prepared a series of polyurethane (PU) coatings with defined contents using poly(tetramethylene oxide)glycol (PTMG) with two different molecular weights (i.e., Mn = 2000 and 650), as well as polydimethyl siloxane (PDMS) with a molecular weight of Mn 550. For every coating, maximum adhesive streng...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 12; no. 9; p. 1947
Main Authors Rahman, Mohammad Mizanur, Suleiman, Rami, Zahir, Md. Hasan, Helal, Aasif, Kumar, A. Madhan, Haq, Md. Bashirul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.08.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We prepared a series of polyurethane (PU) coatings with defined contents using poly(tetramethylene oxide)glycol (PTMG) with two different molecular weights (i.e., Mn = 2000 and 650), as well as polydimethyl siloxane (PDMS) with a molecular weight of Mn 550. For every coating, maximum adhesive strength and excellent self-healing character (three times) were found using 6.775 mol% mixed with low-molecular-weight-based polyols (PU-11-3-3). Defined 1.0 wt% CeO2 was also used for the PU-11-3-3 coating (i.e., PU-11-3-3-CeO2) to obtain UV shielding properties. Both the in situ polymerization and blending processes were separately applied during the preparation of the PU-11-3-3-CeO2 coating dispersion. The in situ polymerization-based coating (i.e., PU-11-3-3-CeO2-P) showed similar self-healing properties. The PU-11-3-3-CeO2-P coating also showed excellent UV shielding in real outdoor exposure conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12091947