Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase
We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that t...
Saved in:
Published in | The Plant cell Vol. 2; no. 3; pp. 263 - 274 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Physiologists
01.03.1990
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have isolated and characterized cDNA clones of a gene family (P2) expressed in Oenothera organensis pollen. This family contains approximately six to eight family members and is expressed at high levels only in pollen. The predicted protein sequence from a near full-length cDNA clone shows that the protein products of these genes are at least 38,000 daltons. We identified the protein encoded by one of the cDNAs in this family by using antibodies to beta-galactosidase/pollen cDNA fusion proteins. Immunoblot analysis using these antibodies identifies a family of proteins of approximately 40 kilodaltons that is present in mature pollen, indicating that these mRNAs are not stored solely for translation after pollen germination. These proteins accumulate late in pollen development and are not detectable in other parts of the plant. Although not present in unpollinated or self-pollinated styles, the 40-kilodalton to 45-kilodalton antigens are detectable in extracts from cross-pollinated styles, suggesting that the proteins are present in pollen tubes growing through the style during pollination. The proteins are also present in pollen tubes growing in vitro. Both nucleotide and amino acid sequences are similar to the published sequences for cDNAs encoding the enzyme polygalacturonase, which suggests that the P2 gene family may function in depolymerizing pectin during pollen development, germination, and tube growth. Cross-hybridizing RNAs and immunoreactive proteins were detected in pollen from a wide variety of plant species, which indicates that the P2 family of polygalacturonase-like genes are conserved and may be expressed in the pollen from many angiosperms. |
---|---|
Bibliography: | F30 F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.2.3.263 |