Fuzzy-Based Super-Twisting Sliding Mode Stabilization Control for Under-Actuated Rotary Inverted Pendulum Systems

This paper considers the stabilization problem for under-actuated rotary inverted pendulum systems (RotIPS) via a fuzzy-based continuous sliding mode control approach. Various sliding mode control (SMC) methods have been proposed for stabilizing the under-actuated RotIPS. However, there are two main...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 185079 - 185092
Main Authors Nguyen, Ngo Phong, Oh, Hyondong, Kim, Yoonsoo, Moon, Jun, Yang, Jun, Chen, Wen-Hua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers the stabilization problem for under-actuated rotary inverted pendulum systems (RotIPS) via a fuzzy-based continuous sliding mode control approach. Various sliding mode control (SMC) methods have been proposed for stabilizing the under-actuated RotIPS. However, there are two main drawbacks of these SMC approaches. First, the existing SMCs have a discontinuous structure; therefore, their control systems suffer from the chattering problem. Second, a complete proof of closed-loop system stability has not been provided. To address these two limitations, we propose a fuzzy-based (continuous) super-twisting stabilization algorithm (FBSTSA) for the under-actuated RotIPS. We first introduce a new sliding surface, which is designed to resolve the under-actuation problem, by combining the fully-actuated (rotary arm) and the under-actuated (pendulum) variables to define one sliding surface. Then, together with the proposed sliding surface, we develop the FBSTSA, where the corresponding control gains are adjusted based on a fuzzy logic scheme. Note that the proposed FBSTSA is continuous owing to the modified super-twisting approach, which can reduce the chattering and enhance the control performance. With the proposed FBSTSA, we show that the sliding variable can reach zero in finite time and then the closed-loop system state converges to zero asymptotically. Various simulation and experimental results are provided to demonstrate the effectiveness of the proposed FBSTSA. In particular, (i) compared with the existing SMC approaches, chattering is alleviated and better stabilization is achieved; and (ii) the robustness of the closed-loop system (with the proposed FBSTSA) is guaranteed under system uncertainties and external disturbances.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3029095