An Adaptive Localized Decision Variable Analysis Approach to Large-Scale Multiobjective and Many-Objective Optimization

This article proposes an adaptive localized decision variable analysis approach under the decomposition-based framework to solve the large-scale multiobjective and many-objective optimization problems (MaOPs). Its main idea is to incorporate the guidance of reference vectors into the control variabl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 7; pp. 1 - 13
Main Authors Ma, Lianbo, Huang, Min, Yang, Shengxiang, Wang, Rui, Wang, Xingwei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article proposes an adaptive localized decision variable analysis approach under the decomposition-based framework to solve the large-scale multiobjective and many-objective optimization problems (MaOPs). Its main idea is to incorporate the guidance of reference vectors into the control variable analysis and optimize the decision variables using an adaptive strategy. Especially, in the control variable analysis, for each search direction, the convergence relevance degree of each decision variable is measured by a projection-based detection method. In the decision variable optimization, the grouped decision variables are optimized with an adaptive scalarization strategy, which is able to adaptively balance the convergence and diversity of the solutions in the objective space. The proposed algorithm is evaluated with a suite of test problems with 2-10 objectives and 200-1000 variables. Experimental results validate the effectiveness and efficiency of the proposed algorithm on the large-scale multiobjective and MaOPs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3041212