Expression of endothelin-1 in the brain and lung of rats exposed to permanent hypobaric hypoxia

High-altitude hypoxia causes pulmonary hypertension in humans and animals. Endothelin-1 (ET-1) is a novel and long-lasting vasoconstrictor. However, no study has dealt with the effects of a hypobaric hypoxic environment (HHE) on ET-1 activity in the brain. We examined 134 male rats permanently expos...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1036; no. 1; pp. 145 - 154
Main Authors Kanazawa, Fumiko, Nakanishi, Kuniaki, Osada, Hiroshi, Kanamaru, Yoshiki, Ohrui, Nobuhiro, Uenoyama, Maki, Masaki, Yoshinori, Kanatani, Yasuhiro, Hiroi, Sadayuki, Tominaga, Susumu, Yakata-Suzuki, Ayako, Matsuyama, Shigeo, Kawai, Toshiaki
Format Journal Article
LanguageEnglish
Published London Elsevier B.V 02.03.2005
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-altitude hypoxia causes pulmonary hypertension in humans and animals. Endothelin-1 (ET-1) is a novel and long-lasting vasoconstrictor. However, no study has dealt with the effects of a hypobaric hypoxic environment (HHE) on ET-1 activity in the brain. We examined 134 male rats permanently exposed to the equivalent of 5500 m altitude for 1 to 8 weeks. In these HHE rats, the mean pulmonary arterial pressure was significantly raised. The level of ET-1 protein, measured by enzyme immunoassay, increased rapidly in the lungs on exposure to HHE, but decreased in the brain. The level of ET-1 mRNA, measured by semiquantitative RT-PCR, was raised at 1, 4, and 6 weeks' exposure in the lungs and at 4 or more weeks' exposure in 3 of 8 brain regions. By in situ hybridization and immunohistochemistry of brain sections, ET-1 mRNA and protein were detected in the endothelial cells, neurons, and astrocyte-like cells in control rats. In HHE rats, the immunoreactive intensity for ET-1 protein decreased rapidly with time in these cells within the brain, although a few weakly ET-1 protein-positive cells were detected until 8 weeks' exposure to HHE. Only a few weakly ET-1 mRNA-positive endothelial cells were detected in any HHE rats. Although the reactivity for ET-1 mRNA had decreased significantly in neurons and astrocyte-like cells at 1 and 2 weeks' exposure to HHE, it was again strong in both types of cells at 4 weeks' exposure to HHE. These results raise the possibility that during exposure to HHE, ET-1 production in the lung may play a role in the development of pulmonary hypertension, while a decrease in ET-1 production within the brain may help to protect neurons by preventing or limiting the constriction of cerebral microvessels during the hypoxia induced by HHE.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2004.12.019