Overview of electroceramic materials for oxide semiconductor thin film transistors

The flat panel display (FPD) market has been experiencing a rapid transition from liquid crystal (LC) to organic light emitting diode (OLED) displays, leading, in turn, to the accelerated commercialization of OLED televisions already in 2013. The major driving force for this rapid change was the ada...

Full description

Saved in:
Bibliographic Details
Published inJournal of electroceramics Vol. 32; no. 2-3; pp. 117 - 140
Main Authors Park, Jin-Seong, Kim, H., Kim, Il-Doo
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.05.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The flat panel display (FPD) market has been experiencing a rapid transition from liquid crystal (LC) to organic light emitting diode (OLED) displays, leading, in turn, to the accelerated commercialization of OLED televisions already in 2013. The major driving force for this rapid change was the adaptation of novel oxide semiconductor materials as the active channel layer in thin film transistors (TFTs). Since the report of amorphous-InGaZnO (a-IGZO) semiconductor materials in 2004, the FPD industry has accelerated the development of oxide TFTs for mass-production. In this review, we focus on recent progress in applying electro-ceramic materials for oxide-semiconductor thin-film-transistors. First, oxide-based semiconductor materials, distinguished by vacuum or solution processing, are discussed, with efforts to develop high-performance, cost-effective devices reviewed in chronological order. The introduction and role of high dielectric constant - reduced leakage gate insulators, in optimizing oxide-semiconductor device performance, are next covered. We conclude by discussing current issues impacting oxide-semiconductor TFTs, such as field effect mobility and device stability and the proposed directions being taken to address them.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1385-3449
1573-8663
DOI:10.1007/s10832-013-9858-0