Operating Cost Reduction of DC Microgrids Under Real-Time Pricing Using Adaptive Differential Evolution Algorithm

Virtual resistance-based droop control is widely adopted as secondary-layer control for grid-connected converters in DC microgrids. This paper presents an alternative usage of the virtual resistances to minimize the total operating cost of DC microgrids under real-time pricing. The total operating c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 169247 - 169258
Main Authors Qian, Xiaoyan, Yang, Yun, Li, Chendan, Tan, Siew-Chong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Virtual resistance-based droop control is widely adopted as secondary-layer control for grid-connected converters in DC microgrids. This paper presents an alternative usage of the virtual resistances to minimize the total operating cost of DC microgrids under real-time pricing. The total operating cost covers the running cost of utility grids, renewable energy sources (RES), energy storage systems (ESS), fuel cells, and power loss on the distribution lines. An adaptive Differential Evolution (ADE) algorithm is adopted in this paper to optimize the virtual resistances of the droop control for the grid-connected converters of dispatchable units, such that the power flow can be regulated. The performances of the proposed strategy are evaluated by the case studies of a 12-bus 380 V DC microgrid using Matlab and a 32-bus 380 V DC microgrid using a Real-Time Digital Simulator (RTDS). Both results validate that the ADE can significantly reduce the operating cost of DC microgrids and outperform the conventional Genetic Algorithm (GA) in terms of cost saving. Comparisons among the microgrids with different numbers of dispatchable units reveal that the cost saving is more prominent when the expansion of dispatchable units.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3024112