Operational Stability, Regenerability, and Thermodynamics Studies on Biogenic Silica/Magnetite/Graphene Oxide Nanocomposite-Activated Candida rugosa Lipase

Inorganic biopolymer-based nanocomposites are useful for stabilizing lipases for enhanced catalytic performance and easy separation. Herein, we report the operational stability, regenerability, and thermodynamics studies of the ternary biogenic silica/magnetite/graphene oxide nanocomposite (SiO2/Fe3...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 21; p. 3854
Main Authors Jacob, Adikwu Gowon, Wahab, Roswanira Abdul, Misson, Mailin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inorganic biopolymer-based nanocomposites are useful for stabilizing lipases for enhanced catalytic performance and easy separation. Herein, we report the operational stability, regenerability, and thermodynamics studies of the ternary biogenic silica/magnetite/graphene oxide nanocomposite (SiO2/Fe3O4/GO) as a support for Candida rugosa lipase (CRL). The X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field-electron scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM), and nitrogen adsorption/desorption data on the support and biocatalyst corroborated their successful fabrication. XPS revealed the Fe3O4 adopted Fe2+ and Fe3+ oxidation states, while XRD data of GO yielded a peak at 2θ = 11.67°, with the SiO2/Fe3O4/GO revealing a high surface area (≈261 m2/g). The fourier transform infrared (FTIR) spectra affirmed the successful fabricated supports and catalyst. The half-life and thermodynamic parameters of the superparamagnetic immobilized CRL (CRL/SiO2/Fe3O4/GO) improved over the free CRL. The microwave-regenerated CRL/SiO2/Fe3O4/GO (≈82%) exhibited higher catalytic activity than ultrasonic-regenerated (≈71%) ones. Lower activation (Ea) and higher deactivation energies (Ed) were also noted for the CRL/SiO2/Fe3O4/GO (13.87 kJ/mol, 32.32 kJ/mol) than free CRL (15.26 kJ/mol, 27.60 kJ/mol). A peak at 4.28 min in the gas chromatograph-flame ionization detection (GC-FID) chromatogram of the purified ethyl valerate supported the unique six types of 14 hydrogen atoms of the ester (CAS: 539-82-2) in the proton nuclear magnetic resonance (1H-NMR) data. The results collectively demonstrated the suitability of SiO2/Fe3O4/GO in stabilizing CRL for improved operational stability and thermodynamics and permitted biocatalyst regenerability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13213854