Simultaneous and Efficient Production of Furfural and Subsequent Glucose in MTHF/H2O Biphasic System via Parameter Regulation

Efficient production of furfural from cornstalk in 2-Methyltetrahydrofuran/aqueous (MTHF/H2O) biphasic system via parameter regulation (e.g., VMTHF/VH2O, temperature, time, and H2SO4 concentration) was proposed. The resulting solid residues achieved from the different MTHF/H2O system conditions for...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 12; no. 3; p. 557
Main Authors Sun, Shaolong, Cao, Xuefei, Li, Huiling, Zhu, Yingbo, Li, Yijing, Jiang, Wei, Wang, Yang, Sun, Shaoni
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 03.03.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Efficient production of furfural from cornstalk in 2-Methyltetrahydrofuran/aqueous (MTHF/H2O) biphasic system via parameter regulation (e.g., VMTHF/VH2O, temperature, time, and H2SO4 concentration) was proposed. The resulting solid residues achieved from the different MTHF/H2O system conditions for furfural production were also to prepare glucose by adding cellulases to increase the high-value applications of cornstalk. A maximum furfural yield (68.1%) was obtained based on reaction condition (VMTHF:VH2O = 1:1, 170 °C, 60 min, 0.05 M H2SO4). Among these parameters, the concentration of H2SO4 had the most obvious effect on the furfural production. The glucose yields of the residues acquired from different MTHF/H2O processes were enhanced and then a maximum value of 78.9% based on the maximum furfural production conditions was observed. Single factor may not be sufficient to detail the difference in glucose production, and several factors affected the hydrolysis efficiency of the residues. Overall, the MTHF/H2O system effectively converted cornstalk into furfural and glucose via a simple and environment-friendly process, thus was an ideal manner for the food industries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12030557