Influence of Ionomer Content in the Catalytic Layer of MEAs Based on Aquivion® Ionomer

Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 21; p. 3832
Main Authors Gatto, Irene, Saccà, Ada, Sebastián, David, Baglio, Vincenzo, Aricò, Antonino Salvatore, Oldani, Claudio, Merlo, Luca, Carbone, Alessandra
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied, considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures (80–95 °C), low pressure, and reduced humidity ((50% RH). %). The best fuel cell performance was found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a maximum catalyst utilization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13213832