Microgravity effects on neural retina regeneration in the newt

Data on forelimb and eye lens regenerationin in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simul...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 22; no. 2; pp. 293 - 301
Main Authors Grigoryan, E.N., Anton, H.J., Mitashov, V.I.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Data on forelimb and eye lens regenerationin in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simulated microgravity suggest that the stimulatory effect of SFC is due largely to weightlessness. An original experimental model is proposed, which is convenient for comprehensively analyzing neural regeneration under SFC. The initial results described here concern regeneation of neural retina in Pleurodeles waltl newts exposed to microgravity simulated in radial clinostat. After clinorotation for seven days (until postoperation day 16), a positive effect of altered gravity on structural restoration of detached neural retina was confirmed by a number of criteria. Specifically, an increased number of Müllerian glial cells, an increased relative volume of the plexiform layers, reduced cell death, advanced redifferentiation of retinal pigment epithelium, and extended areas of neural retina reattachment were detected in experimental newts. Moreover, cell proliferation in the inner nuclear layer of neural retina increased as compared with control. Thus, low gravity appears to intensify natural cytological and molecular mechanisms of neural retina regeneration in lower vertebrates.
Bibliography:SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ISSN:0273-1177
1879-1948
DOI:10.1016/S0273-1177(98)80023-9