Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications

High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scal...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 13; no. 11; p. 1786
Main Authors Kramer, Stanko, Cameron, Neil R., Krajnc, Peter
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.05.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
AbstractList High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
Author Cameron, Neil R
Krajnc, Peter
Kramer, Stanko
AuthorAffiliation 1 PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; stanko.kramer@um.si
2 Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
AuthorAffiliation_xml – name: 1 PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; stanko.kramer@um.si
– name: 2 Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
Author_xml – sequence: 1
  givenname: Stanko
  orcidid: 0000-0002-6940-8085
  surname: Kramer
  fullname: Kramer, Stanko
– sequence: 2
  givenname: Neil R.
  orcidid: 0000-0003-3679-7667
  surname: Cameron
  fullname: Cameron, Neil R.
– sequence: 3
  givenname: Peter
  orcidid: 0000-0002-9782-131X
  surname: Krajnc
  fullname: Krajnc, Peter
BookMark eNpdkktr3DAQgEVJadI0x9wNvfTiVmPJelwCaUibhUAWmlsPQtZj14tsuZIdyL-vNhtKN3OZYebjYxjmIzoZ4-gQugT8lRCJv00xPA9AAIAL9g6dNZiTmhKGT_6rT9FFzjtcgraMAf-ATgnFHJggZ-j3Oqa45Gq9N7mUK5_iUN31m221GmeXRh2q9VZnV90OS8h9HHOlc_XLaO9jsIWPqfrexxA3vSns9TSFUsx78BN673XI7uI1n6PHH7ePN3f1_cPP1c31fW1oK-ZaGiq54dpJah1QENxygq0k3ndOAAYDrfCYWde2vPXWNrIBIJLZpm2wJ-doddDaqHdqSv2g07OKulcvjZg2Sqe5N8Ep3XFtMGcNcE2tZB2TlDVYdI53jGNTXFcH17R0g7PGjXPS4Uh6PBn7rdrEJyVACiFxEXx5FaT4Z3F5VkOfjQtBj67cWTUtYZQxhqGgn9-gu7jsD_5CSclAYlao-kCZFHNOzv9bBrDaP4E6egLyF3UZpX0
CitedBy_id crossref_primary_10_3390_app131910899
crossref_primary_10_1089_3dp_2022_0289
crossref_primary_10_1021_acsomega_3c05270
crossref_primary_10_1007_s00396_023_05222_x
crossref_primary_10_3390_polym14071338
crossref_primary_10_1007_s10924_023_02855_5
crossref_primary_10_3390_foods11182883
crossref_primary_10_3390_polym13193366
crossref_primary_10_1021_acs_macromol_2c00926
crossref_primary_10_3390_polym14132687
crossref_primary_10_1021_acs_biomac_3c01013
crossref_primary_10_3390_polym13162648
crossref_primary_10_1002_app_51785
crossref_primary_10_1016_j_reactfunctpolym_2023_105551
crossref_primary_10_1039_D1CC04941K
crossref_primary_10_1016_j_cep_2021_108685
crossref_primary_10_1016_j_jmmm_2022_169921
crossref_primary_10_1016_j_eurpolymj_2024_113291
crossref_primary_10_1021_acs_langmuir_2c01565
crossref_primary_10_1002_pol_20220176
crossref_primary_10_1007_s10965_022_03328_4
crossref_primary_10_1016_j_bioadv_2022_212948
crossref_primary_10_1016_j_molliq_2023_123922
crossref_primary_10_3390_polym15010228
crossref_primary_10_1016_j_cis_2024_103086
crossref_primary_10_1002_mabi_202300393
crossref_primary_10_1021_acsomega_3c01265
crossref_primary_10_3389_fchem_2023_1236944
crossref_primary_10_3390_pharmaceutics13071083
crossref_primary_10_1002_mame_202300010
crossref_primary_10_1021_acs_biomac_1c01129
crossref_primary_10_1089_3dp_2022_0235
crossref_primary_10_1021_acs_macromol_3c00951
crossref_primary_10_1016_j_matchemphys_2023_127646
crossref_primary_10_1021_acs_macromol_4c00064
crossref_primary_10_1016_j_micromeso_2023_112509
crossref_primary_10_1093_rb_rbae024
crossref_primary_10_3390_polym15102255
crossref_primary_10_1021_acs_macromol_1c01240
crossref_primary_10_1021_acsami_3c16686
crossref_primary_10_1002_pat_5948
Cites_doi 10.1002/mame.201600367
10.1016/j.polymer.2017.05.067
10.1021/bm800599d
10.1016/S1672-6529(08)60064-5
10.1016/S1369-7021(11)70058-X
10.1016/j.reactfunctpolym.2020.104515
10.1039/C7TB00145B
10.15252/embr.201439518
10.1002/mabi.201700414
10.46582/jsrm.0101003
10.1016/j.msec.2019.110060
10.3390/ma12040568
10.1002/marc.201200393
10.1016/j.progpolymsci.2013.07.003
10.1007/s40520-013-0088-8
10.1002/mabi.201800351
10.1016/j.ihj.2016.01.003
10.1039/b707499a
10.1002/adfm.200400072
10.1021/la0520233
10.1088/2053-1591/ab437f
10.1016/j.reactfunctpolym.2012.02.007
10.1016/j.actbio.2019.01.044
10.3144/expresspolymlett.2015.32
10.1021/acs.langmuir.7b04047
10.1155/2015/283796
10.1021/acsami.7b05012
10.1002/pola.29353
10.1016/j.polymer.2017.07.046
10.1016/j.biomaterials.2015.01.034
10.1021/ma200362u
10.1016/j.chroma.2004.10.051
10.1039/C7PY01375B
10.3390/ijms11093298
10.1021/ma7027177
10.1002/pola.23744
10.1039/C5PY00721F
10.1016/j.biomaterials.2003.10.086
10.1016/j.jcis.2019.03.024
10.1039/c2sm26250a
10.1089/ten.tea.2013.0319
10.1016/j.biomaterials.2014.07.013
10.1016/j.biomaterials.2005.01.040
10.1016/j.polymer.2010.11.006
10.1002/anie.200903924
10.1016/j.colsurfa.2020.125334
10.1016/j.matdes.2018.06.061
10.1021/bm401145x
10.1021/bm060533l
10.1016/j.reactfunctpolym.2018.07.015
10.1063/1.5008556
10.1103/PhysRevLett.84.2064
10.1002/jssc.202000612
10.1007/978-1-4615-0063-6_18
10.1021/am504877h
10.1002/mabi.201700306
10.1016/j.surfcoat.2013.02.042
10.1016/j.polymer.2004.11.097
10.1155/2019/7268192
10.1021/acsbiomaterials.6b00663
10.1002/macp.202000381
10.1021/ja308523f
10.18063/ijb.v6i2.265
10.1021/acs.macromol.8b02576
10.1039/C5TB01873K
10.1080/15685551.2015.1070503
10.1021/acs.biomac.8b00635
10.3389/fbioe.2020.557111
10.1038/srep28695
10.1016/j.bbrc.2007.01.105
10.1111/j.1469-7580.2007.00778.x
10.1016/j.biomaterials.2018.09.027
10.1002/marc.201300709
10.4103/0971-4065.127881
10.1016/j.biomaterials.2017.06.020
10.1021/bm0000889
10.1533/9781845696610
10.1021/bm2008839
10.1039/C7BM00292K
10.1039/c3tb20888e
10.1016/j.jbbm.2004.12.001
10.1039/C5RA14345D
10.1021/acsami.9b23100
10.1039/C7SM00706J
10.1021/bm500754r
10.3390/polym11060959
10.3390/ma12162643
10.18063/IJB.2016.02.005
10.1016/j.reactfunctpolym.2012.02.011
10.1016/j.carbpol.2020.116345
10.1039/C5TB00093A
10.3389/fbioe.2020.00875
10.1016/j.seppur.2020.117748
10.1186/s12963-016-0089-x
10.1016/j.actbio.2019.10.017
10.1016/j.polymer.2015.02.002
10.1016/S0079-6700(01)00049-1
10.1039/C2PY00518B
10.4028/www.scientific.net/AST.77.172
10.1088/1748-6041/7/5/055005
10.1021/cr200440z
10.1016/j.polymer.2019.05.023
10.1016/j.polymer.2020.123327
10.1002/marc.201400524
10.1016/j.jmbbm.2015.09.019
10.1007/s00467-008-1020-x
10.1002/pi.934
10.1089/ten.tea.2015.0370
10.1016/j.biomaterials.2019.119533
10.3389/fbioe.2019.00451
10.1002/jbm.a.34490
10.1016/j.bbrc.2003.12.135
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/polym13111786
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Architecture
EISSN 2073-4360
ExternalDocumentID oai_doaj_org_article_ab7ac076217a4d96b6946208be7b670c
10_3390_polym13111786
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESTFP
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c458t-9c497c7ae94de14187d730d93ffbe8101c158f06de5575fdd29211396d2520f3
IEDL.DBID RPM
ISSN 2073-4360
IngestDate Sun Sep 29 07:08:16 EDT 2024
Tue Sep 17 21:07:50 EDT 2024
Fri Aug 16 22:47:03 EDT 2024
Fri Sep 13 00:41:25 EDT 2024
Thu Sep 26 21:16:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-9c497c7ae94de14187d730d93ffbe8101c158f06de5575fdd29211396d2520f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-3679-7667
0000-0002-9782-131X
0000-0002-6940-8085
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8198890/
PMID 34071683
PQID 2539961906
PQPubID 2032345
ParticipantIDs doaj_primary_oai_doaj_org_article_ab7ac076217a4d96b6946208be7b670c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8198890
proquest_miscellaneous_2536466601
proquest_journals_2539961906
crossref_primary_10_3390_polym13111786
PublicationCentury 2000
PublicationDate 20210528
PublicationDateYYYYMMDD 2021-05-28
PublicationDate_xml – month: 5
  year: 2021
  text: 20210528
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Parveen (ref_7) 2006; 1
Yoshida (ref_34) 2013; 233
Lee (ref_79) 2017; 5
Gurevitch (ref_26) 2011; 44
ref_97
ref_95
Busby (ref_52) 2002; 51
Hayman (ref_51) 2005; 62
Hu (ref_93) 2015; 3
Mert (ref_12) 2015; 9
Nalawade (ref_58) 2016; 4
Koler (ref_35) 2021; 222
Gitli (ref_24) 2011; 52
Robinson (ref_68) 2014; 20
Bokhari (ref_37) 2007; 354
Brown (ref_3) 2015; 16
Ratcliffe (ref_77) 2019; 57
Paljevac (ref_83) 2018; 18
Changotade (ref_89) 2015; 2015
Zhou (ref_106) 2013; 1
Ng (ref_102) 2020; 241
Barbetta (ref_104) 2008; 9
Murphy (ref_81) 2020; 101
Zhang (ref_16) 2019; 52
Eissa (ref_80) 2018; 19
Lu (ref_87) 2015; 5
Chiarello (ref_5) 2013; 25
Whitely (ref_84) 2018; 185
Murphy (ref_75) 2017; 8
Klenk (ref_1) 2016; 14
Hayman (ref_50) 2004; 314
Hoyle (ref_71) 2010; 49
Luo (ref_96) 2015; 61
Whitely (ref_56) 2019; 93
Krajnc (ref_13) 2005; 1065
Krajnc (ref_36) 2012; 72
Hayward (ref_43) 2013; 14
Benaddi (ref_28) 2021; 213
Dikici (ref_100) 2020; 12
Silverstein (ref_18) 2014; 39
Pakeyangkoon (ref_41) 2012; 77
Hu (ref_99) 2019; 545
Barbetta (ref_111) 2006; 7
Tan (ref_107) 2017; 13
Mansour (ref_86) 2010; 11
Caldwell (ref_74) 2012; 8
Dikici (ref_25) 2020; 8
Busby (ref_53) 2001; 2
Bahmaee (ref_70) 2020; 8
Beuermann (ref_27) 2002; 27
Pulko (ref_14) 2012; 33
Wu (ref_10) 2012; 112
Whitely (ref_85) 2017; 3
Nair (ref_90) 2013; 101
Mert (ref_31) 2019; 6
Lumelsky (ref_55) 2008; 41
Sherborne (ref_65) 2018; 156
Oh (ref_112) 2015; 36
Liu (ref_44) 2008; 5
Viswanathan (ref_47) 2012; 134
Silverstein (ref_17) 2017; 126
Davis (ref_22) 2021; 255
Viswanathan (ref_48) 2015; 52
Malayeri (ref_66) 2016; 2
Kolar (ref_33) 2015; 18
Moglia (ref_67) 2011; 12
Ingulli (ref_6) 2010; 25
Owen (ref_59) 2020; 6
Streifel (ref_64) 2018; 18
Hu (ref_94) 2014; 6
Liska (ref_72) 2014; 15
Li (ref_19) 2018; 131
Bokhari (ref_39) 2007; 17
Owen (ref_61) 2016; 54
Tonelli (ref_4) 2014; 24
Teng (ref_113) 2014; 35
Bokhari (ref_38) 2007; 211
Johnson (ref_82) 2015; 6
(ref_9) 2011; 14
Mishra (ref_2) 2016; 68
Golub (ref_20) 2020; 149
Robinson (ref_63) 2016; 22
Preechawong (ref_46) 2019; 2019
Paterson (ref_62) 2018; 2
Lumelsky (ref_88) 2009; 47
Wang (ref_21) 2020; 605
Corti (ref_69) 2019; 105
Hu (ref_92) 2017; 302
Bokhari (ref_54) 2005; 26
Sergent (ref_30) 2012; 72
Moglia (ref_57) 2014; 15
Liu (ref_109) 2017; 5
Yang (ref_101) 2017; 9
Tan (ref_108) 2018; 34
Akay (ref_45) 2004; 25
Luo (ref_23) 2021; 44
Dikici (ref_98) 2020; 7
Severn (ref_78) 2019; 225
Cameron (ref_11) 2005; 46
Grainger (ref_103) 2017; 141
Barbetta (ref_32) 2005; 21
Torquato (ref_15) 2000; 84
Krajnc (ref_29) 2012; 3
Massimi (ref_110) 2012; 7
Hayward (ref_42) 2013; 34
ref_40
McGann (ref_60) 2017; 126
Naranda (ref_73) 2016; 6
Barbetta (ref_105) 2005; 15
Bokhari (ref_49) 2003; 534
Dikici (ref_91) 2019; 175
ref_8
Richardson (ref_76) 2019; 19
References_xml – volume: 302
  start-page: 1600367
  year: 2017
  ident: ref_92
  article-title: One-Pot Fabrication of Poly(ε-Caprolactone)-Incorporated Bovine Serum Albumin/Calcium Alginate/Hydroxyapatite Nanocomposite Scaffolds by High Internal Phase Emulsion Templates
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201600367
  contributor:
    fullname: Hu
– volume: 126
  start-page: 408
  year: 2017
  ident: ref_60
  article-title: Multifunctional polyHIPE wound dressings for the treatment of severe limb trauma
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.05.067
  contributor:
    fullname: McGann
– volume: 9
  start-page: 2844
  year: 2008
  ident: ref_104
  article-title: Emulsion Templated Scaffolds that Include Gelatin and Glycosaminoglycans
  publication-title: Biomacromolecules
  doi: 10.1021/bm800599d
  contributor:
    fullname: Barbetta
– volume: 5
  start-page: 1
  year: 2008
  ident: ref_44
  article-title: Biomimetic Synthesis of Collagen/Nano-Hydroxyapitate Scaffold for Tissue Engineering
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(08)60064-5
  contributor:
    fullname: Liu
– volume: 14
  start-page: 88
  year: 2011
  ident: ref_9
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70058-X
– volume: 149
  start-page: 104515
  year: 2020
  ident: ref_20
  article-title: Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2020.104515
  contributor:
    fullname: Golub
– volume: 5
  start-page: 2671
  year: 2017
  ident: ref_109
  article-title: High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00145B
  contributor:
    fullname: Liu
– volume: 16
  start-page: 137
  year: 2015
  ident: ref_3
  article-title: Living too long
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439518
  contributor:
    fullname: Brown
– volume: 18
  start-page: e1700414
  year: 2018
  ident: ref_64
  article-title: Hemostatic and Absorbent PolyHIPE-Kaolin Composites for 3D Printable Wound Dressing Materials
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201700414
  contributor:
    fullname: Streifel
– volume: 1
  start-page: 8
  year: 2006
  ident: ref_7
  article-title: New Era in Health Care: Tissue Engineering
  publication-title: J. Stem Cells Regen. Med.
  doi: 10.46582/jsrm.0101003
  contributor:
    fullname: Parveen
– volume: 105
  start-page: 110060
  year: 2019
  ident: ref_69
  article-title: Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110060
  contributor:
    fullname: Corti
– ident: ref_8
  doi: 10.3390/ma12040568
– volume: 33
  start-page: 1731
  year: 2012
  ident: ref_14
  article-title: High Internal Phase Emulsion Templating—A Path to Hierarchically Porous Functional Polymers
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201200393
  contributor:
    fullname: Pulko
– volume: 39
  start-page: 199
  year: 2014
  ident: ref_18
  article-title: PolyHIPEs: Recent advances in emulsion-templated porous polymers
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.07.003
  contributor:
    fullname: Silverstein
– volume: 25
  start-page: 101
  year: 2013
  ident: ref_5
  article-title: Autograft, allograft and bone substitutes in reconstructive orthopedic surgery
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-013-0088-8
  contributor:
    fullname: Chiarello
– volume: 19
  start-page: e1800351
  year: 2019
  ident: ref_76
  article-title: Covalent Attachment of Fibronectin onto Emulsion-Templated Porous Polymer Scaffolds Enhances Human Endometrial Stromal Cell Adhesion, Infiltration, and Function
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800351
  contributor:
    fullname: Richardson
– volume: 68
  start-page: 19
  year: 2016
  ident: ref_2
  article-title: Does modern medicine increase life-expectancy: Quest for the Moon Rabbit?
  publication-title: Indian Heart J.
  doi: 10.1016/j.ihj.2016.01.003
  contributor:
    fullname: Mishra
– volume: 17
  start-page: 4088
  year: 2007
  ident: ref_39
  article-title: Emulsion-templated porous polymers as scaffolds for three dimensional cell culture: Effect of synthesis parameters on scaffold formation and homogeneity
  publication-title: J. Mater. Chem.
  doi: 10.1039/b707499a
  contributor:
    fullname: Bokhari
– volume: 15
  start-page: 118
  year: 2005
  ident: ref_105
  article-title: Scaffolds Based on Biopolymeric Foams
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400072
  contributor:
    fullname: Barbetta
– volume: 21
  start-page: 12333
  year: 2005
  ident: ref_32
  article-title: Tailoring the Porosity and Morphology of Gelatin-Methacrylate PolyHIPE Scaffolds for Tissue Engineering Applications
  publication-title: Langmuir
  doi: 10.1021/la0520233
  contributor:
    fullname: Barbetta
– volume: 6
  start-page: 115306
  year: 2019
  ident: ref_31
  article-title: A statistical approach for tailoring the morphological and mechanical properties of polystyrene PolyHIPEs: Looking through experimental design
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab437f
  contributor:
    fullname: Mert
– volume: 72
  start-page: 221
  year: 2012
  ident: ref_36
  article-title: Methacrylic acid microcellular highly porous monoliths: Preparation and functionalisation
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.02.007
  contributor:
    fullname: Krajnc
– volume: 93
  start-page: 169
  year: 2019
  ident: ref_56
  article-title: Porous PolyHIPE microspheres for protein delivery from an injectable bone graft
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.01.044
  contributor:
    fullname: Whitely
– volume: 15
  start-page: 253
  year: 2014
  ident: ref_72
  article-title: Microcellular Open Porous Monoliths for Cell Growth by Thiol-Ene Polymerization of Low-Toxicity Monomers in High Internal Phase Emulsions
  publication-title: Macromol. Biosci.
  contributor:
    fullname: Liska
– volume: 9
  start-page: 344
  year: 2015
  ident: ref_12
  article-title: Tailoring the mechanical and thermal properties of dicyclopentadiene polyHIPEs with the use of a comonomer
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2015.32
  contributor:
    fullname: Mert
– volume: 34
  start-page: 4820
  year: 2018
  ident: ref_108
  article-title: Hierarchical Porous Protein Scaffold Templated from High Internal Phase Emulsion Costabilized by Gelatin and Gelatin Nanoparticles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04047
  contributor:
    fullname: Tan
– volume: 2015
  start-page: 283796
  year: 2015
  ident: ref_89
  article-title: Preliminary In Vitro Assessment of Stem Cell Compatibility with Cross-Linked Poly(ε-caprolactone urethane) Scaffolds Designed through High Internal Phase Emulsions
  publication-title: Stem Cells Int.
  doi: 10.1155/2015/283796
  contributor:
    fullname: Changotade
– volume: 9
  start-page: 22950
  year: 2017
  ident: ref_101
  article-title: Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05012
  contributor:
    fullname: Yang
– volume: 57
  start-page: 1974
  year: 2019
  ident: ref_77
  article-title: Optimized peptide functionalization of thiol-acrylate emulsion-templated porous polymers leads to expansion of human pluripotent stem cells in 3D culture
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.29353
  contributor:
    fullname: Ratcliffe
– volume: 126
  start-page: 261
  year: 2017
  ident: ref_17
  article-title: Emulsion-templated polymers: Contemporary contemplations
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.07.046
  contributor:
    fullname: Silverstein
– volume: 52
  start-page: 140
  year: 2015
  ident: ref_48
  article-title: 3D surface topology guides stem cell adhesion and differentiation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.034
  contributor:
    fullname: Viswanathan
– volume: 44
  start-page: 3398
  year: 2011
  ident: ref_26
  article-title: Nanoparticle-Based and Organic-Phase-Based AGET ATRP PolyHIPE Synthesis within Pickering HIPEs and Surfactant-Stabilized HIPEs
  publication-title: Macromolecules
  doi: 10.1021/ma200362u
  contributor:
    fullname: Gurevitch
– volume: 1065
  start-page: 69
  year: 2005
  ident: ref_13
  article-title: Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2004.10.051
  contributor:
    fullname: Krajnc
– volume: 8
  start-page: 6617
  year: 2017
  ident: ref_75
  article-title: Tailored emulsion-templated porous polymer scaffolds for iPSC-derived human neural precursor cell culture
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01375B
  contributor:
    fullname: Murphy
– volume: 11
  start-page: 3298
  year: 2010
  ident: ref_86
  article-title: Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11093298
  contributor:
    fullname: Mansour
– volume: 41
  start-page: 1469
  year: 2008
  ident: ref_55
  article-title: Porous Polycaprolactone-Polystyrene Semi-interpenetrating Polymer Networks Synthesized within High Internal Phase Emulsions
  publication-title: Macromolecules
  doi: 10.1021/ma7027177
  contributor:
    fullname: Lumelsky
– volume: 47
  start-page: 7043
  year: 2009
  ident: ref_88
  article-title: A degradable, porous, emulsion-templated polyacrylate
  publication-title: J. Polym. Sci. Part A Polym. Chem.
  doi: 10.1002/pola.23744
  contributor:
    fullname: Lumelsky
– volume: 6
  start-page: 7256
  year: 2015
  ident: ref_82
  article-title: Fully biodegradable and biocompatible emulsion templated polymer scaffolds by thiol-acrylate polymerization of polycaprolactone macromonomers
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00721F
  contributor:
    fullname: Johnson
– volume: 25
  start-page: 3991
  year: 2004
  ident: ref_45
  article-title: Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.086
  contributor:
    fullname: Akay
– volume: 545
  start-page: 104
  year: 2019
  ident: ref_99
  article-title: Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.024
  contributor:
    fullname: Hu
– volume: 8
  start-page: 10344
  year: 2012
  ident: ref_74
  article-title: Degradable emulsion-templated scaffolds for tissue engineering from thiol-ene photopolymerisation
  publication-title: Soft Matter
  doi: 10.1039/c2sm26250a
  contributor:
    fullname: Caldwell
– volume: 20
  start-page: 1103
  year: 2014
  ident: ref_68
  article-title: Achieving Interconnected Pore Architecture in Injectable PolyHIPEs for Bone Tissue Engineering
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2013.0319
  contributor:
    fullname: Robinson
– volume: 35
  start-page: 8916
  year: 2014
  ident: ref_113
  article-title: A tough, precision-porous hydrogel scaffold: Ophthalmologic applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.013
  contributor:
    fullname: Teng
– volume: 26
  start-page: 5198
  year: 2005
  ident: ref_54
  article-title: The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.01.040
  contributor:
    fullname: Bokhari
– volume: 52
  start-page: 107
  year: 2011
  ident: ref_24
  article-title: Emulsion templated bicontinuous hydrophobic-hydrophilic polymers: Loading and release
  publication-title: Polymer
  doi: 10.1016/j.polymer.2010.11.006
  contributor:
    fullname: Gitli
– volume: 49
  start-page: 1540
  year: 2010
  ident: ref_71
  article-title: Thiol-Ene Click Chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200903924
  contributor:
    fullname: Hoyle
– volume: 605
  start-page: 125334
  year: 2020
  ident: ref_21
  article-title: A facile synthesis of cationic and super-hydrophobic polyHIPEs as precursors to carbon foam and adsorbents for removal of non-aqueous-phase dye
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2020.125334
  contributor:
    fullname: Wang
– volume: 156
  start-page: 494
  year: 2018
  ident: ref_65
  article-title: Light-based additive manufacturing of PolyHIPEs: Controlling the surface porosity for 3D cell culture applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.06.061
  contributor:
    fullname: Sherborne
– volume: 14
  start-page: 4271
  year: 2013
  ident: ref_43
  article-title: Galactose-Functionalized PolyHIPE Scaffolds for Use in Routine Three Dimensional Culture of Mammalian Hepatocytes
  publication-title: Biomacromolecules
  doi: 10.1021/bm401145x
  contributor:
    fullname: Hayward
– volume: 7
  start-page: 3059
  year: 2006
  ident: ref_111
  article-title: Enzymatic Cross-Linking versus Radical Polymerization in the Preparation of Gelatin PolyHIPEs and Their Performance as Scaffolds in the Culture of Hepatocytes
  publication-title: Biomacromolecules
  doi: 10.1021/bm060533l
  contributor:
    fullname: Barbetta
– volume: 131
  start-page: 142
  year: 2018
  ident: ref_19
  article-title: Preparation of PolyHIPE beads and the application in bio-degradation of sulfate containing wastewater
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2018.07.015
  contributor:
    fullname: Li
– volume: 2
  start-page: 026103
  year: 2018
  ident: ref_62
  article-title: Porous microspheres support mesenchymal progenitor cell ingrowth and stimulate angiogenesis
  publication-title: APL Bioeng.
  doi: 10.1063/1.5008556
  contributor:
    fullname: Paterson
– volume: 84
  start-page: 2064
  year: 2000
  ident: ref_15
  article-title: Is Random Close Packing of Spheres Well Defined?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2064
  contributor:
    fullname: Torquato
– volume: 44
  start-page: 169
  year: 2021
  ident: ref_23
  article-title: Recent advances in separation applications of polymerized high internal phase emulsions
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.202000612
  contributor:
    fullname: Luo
– volume: 534
  start-page: 247
  year: 2003
  ident: ref_49
  article-title: Polyhipe polymer: A novel scaffold for in vitro bone tissue engineering
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4615-0063-6_18
  contributor:
    fullname: Bokhari
– volume: 6
  start-page: 17166
  year: 2014
  ident: ref_94
  article-title: Facile Fabrication of Poly(l-lactic Acid)-Grafted Hydroxyapatite/Poly(lactic-co-glycolic Acid) Scaffolds by Pickering High Internal Phase Emulsion Templates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504877h
  contributor:
    fullname: Hu
– volume: 18
  start-page: 1700306
  year: 2018
  ident: ref_83
  article-title: Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201700306
  contributor:
    fullname: Paljevac
– volume: 233
  start-page: 99
  year: 2013
  ident: ref_34
  article-title: Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.02.042
  contributor:
    fullname: Yoshida
– volume: 46
  start-page: 1439
  year: 2005
  ident: ref_11
  article-title: High internal phase emulsion templating as a route to well-defined porous polymers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.11.097
  contributor:
    fullname: Cameron
– volume: 2019
  start-page: 7268192
  year: 2019
  ident: ref_46
  article-title: Nanolayer Film on Poly(Styrene/Ethylene Glycol Dimethacrylate) High Internal Phase Emulsion Porous Polymer Surface as a Scaffold for Tissue Engineering Application
  publication-title: J. Nanomater.
  doi: 10.1155/2019/7268192
  contributor:
    fullname: Preechawong
– volume: 3
  start-page: 409
  year: 2017
  ident: ref_85
  article-title: Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization Using a Thiol-Based Cross-Linker
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00663
  contributor:
    fullname: Whitely
– volume: 222
  start-page: 2000381
  year: 2021
  ident: ref_35
  article-title: Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.202000381
  contributor:
    fullname: Koler
– volume: 134
  start-page: 20103
  year: 2012
  ident: ref_47
  article-title: Cell Instructive Microporous Scaffolds through Interface Engineering
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308523f
  contributor:
    fullname: Viswanathan
– volume: 6
  start-page: 265
  year: 2020
  ident: ref_59
  article-title: Combined Porogen Leaching and Emulsion Templating to Produce Bone Tissue Engineering Scaffolds
  publication-title: Int. J. Bioprint.
  doi: 10.18063/ijb.v6i2.265
  contributor:
    fullname: Owen
– volume: 52
  start-page: 5445
  year: 2019
  ident: ref_16
  article-title: Emulsion Templating: Porous Polymers and Beyond
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b02576
  contributor:
    fullname: Zhang
– volume: 4
  start-page: 450
  year: 2016
  ident: ref_58
  article-title: Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01873K
  contributor:
    fullname: Nalawade
– volume: 18
  start-page: 698
  year: 2015
  ident: ref_33
  article-title: Tailoring morphological features of cross-linked emulsion-templated poly(glycidyl methacrylate)
  publication-title: Des. Monomers Polym.
  doi: 10.1080/15685551.2015.1070503
  contributor:
    fullname: Kolar
– volume: 19
  start-page: 3343
  year: 2018
  ident: ref_80
  article-title: Enhanced Differentiation Potential of Primary Human Endometrial Cells Cultured on 3D Scaffolds
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00635
  contributor:
    fullname: Eissa
– volume: 8
  start-page: 557111
  year: 2020
  ident: ref_70
  article-title: Design and Evaluation of an Osteogenesis-on-a-Chip Microfluidic Device Incorporating 3D Cell Culture
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.557111
  contributor:
    fullname: Bahmaee
– volume: 6
  start-page: 28695
  year: 2016
  ident: ref_73
  article-title: Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration
  publication-title: Sci. Rep.
  doi: 10.1038/srep28695
  contributor:
    fullname: Naranda
– volume: 354
  start-page: 1095
  year: 2007
  ident: ref_37
  article-title: Novel cell culture device enabling three-dimensional cell growth and improved cell function
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.01.105
  contributor:
    fullname: Bokhari
– volume: 211
  start-page: 567
  year: 2007
  ident: ref_38
  article-title: Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological challenge
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2007.00778.x
  contributor:
    fullname: Bokhari
– volume: 185
  start-page: 194
  year: 2018
  ident: ref_84
  article-title: Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.027
  contributor:
    fullname: Whitely
– volume: 34
  start-page: 1844
  year: 2013
  ident: ref_42
  article-title: Acrylic-Acid-Functionalized PolyHIPE Scaffolds for Use in 3D Cell Culture
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201300709
  contributor:
    fullname: Hayward
– volume: 24
  start-page: 71
  year: 2014
  ident: ref_4
  article-title: Chronic kidney disease and the aging population
  publication-title: Indian J. Nephrol.
  doi: 10.4103/0971-4065.127881
  contributor:
    fullname: Tonelli
– volume: 141
  start-page: 96
  year: 2017
  ident: ref_103
  article-title: Polysaccharide matrices used in 3D in vitro cell culture systems
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.020
  contributor:
    fullname: Grainger
– volume: 2
  start-page: 154
  year: 2001
  ident: ref_53
  article-title: Emulsion-Derived Foams (PolyHIPEs) Containing Poly(ε-caprolactone) as Matrixes for Tissue Engineering
  publication-title: Biomacromolecules
  doi: 10.1021/bm0000889
  contributor:
    fullname: Busby
– ident: ref_95
  doi: 10.1533/9781845696610
– volume: 12
  start-page: 3621
  year: 2011
  ident: ref_67
  article-title: Injectable PolyHIPEs as High-Porosity Bone Grafts
  publication-title: Biomacromolecules
  doi: 10.1021/bm2008839
  contributor:
    fullname: Moglia
– volume: 5
  start-page: 2035
  year: 2017
  ident: ref_79
  article-title: Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00292K
  contributor:
    fullname: Lee
– volume: 1
  start-page: 4736
  year: 2013
  ident: ref_106
  article-title: Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20888e
  contributor:
    fullname: Zhou
– volume: 62
  start-page: 231
  year: 2005
  ident: ref_51
  article-title: Growth of human stem cell-derived neurons on solid three-dimensional polymers
  publication-title: J. Biochem. Biophys. Methods
  doi: 10.1016/j.jbbm.2004.12.001
  contributor:
    fullname: Hayman
– volume: 5
  start-page: 92017
  year: 2015
  ident: ref_87
  article-title: Emulsion-templated poly(acrylamide)s by using polyvinyl alcohol (PVA) stabilized CO2-in-water emulsions and their applications in tissue engineering scaffolds
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14345D
  contributor:
    fullname: Lu
– volume: 12
  start-page: 12510
  year: 2020
  ident: ref_100
  article-title: Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23100
  contributor:
    fullname: Dikici
– volume: 13
  start-page: 3871
  year: 2017
  ident: ref_107
  article-title: Interconnected macroporous 3D scaffolds templated from gelatin nanoparticle-stabilized high internal phase emulsions for biomedical applications
  publication-title: Soft Matter
  doi: 10.1039/C7SM00706J
  contributor:
    fullname: Tan
– volume: 15
  start-page: 2870
  year: 2014
  ident: ref_57
  article-title: Injectable Polymerized High Internal Phase Emulsions with Rapid in Situ Curing
  publication-title: Biomacromolecules
  doi: 10.1021/bm500754r
  contributor:
    fullname: Moglia
– ident: ref_40
  doi: 10.3390/polym11060959
– ident: ref_97
  doi: 10.3390/ma12162643
– volume: 2
  start-page: 67
  year: 2016
  ident: ref_66
  article-title: Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write
  publication-title: Int. J. Bioprint.
  doi: 10.18063/IJB.2016.02.005
  contributor:
    fullname: Malayeri
– volume: 72
  start-page: 962
  year: 2012
  ident: ref_30
  article-title: Preparation of thiol—Ene porous polymers by emulsion templating
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2012.02.011
  contributor:
    fullname: Sergent
– volume: 241
  start-page: 116345
  year: 2020
  ident: ref_102
  article-title: Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine—A review
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116345
  contributor:
    fullname: Ng
– volume: 3
  start-page: 3848
  year: 2015
  ident: ref_93
  article-title: Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00093A
  contributor:
    fullname: Hu
– volume: 8
  start-page: 875
  year: 2020
  ident: ref_25
  article-title: Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00875
  contributor:
    fullname: Dikici
– volume: 255
  start-page: 117748
  year: 2021
  ident: ref_22
  article-title: Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117748
  contributor:
    fullname: Davis
– volume: 14
  start-page: 20
  year: 2016
  ident: ref_1
  article-title: Changes in life expectancy 1950–2010: Contributions from age- and disease-specific mortality in selected countries
  publication-title: Popul. Health Metr.
  doi: 10.1186/s12963-016-0089-x
  contributor:
    fullname: Klenk
– volume: 101
  start-page: 102
  year: 2020
  ident: ref_81
  article-title: Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.10.017
  contributor:
    fullname: Murphy
– volume: 61
  start-page: 183
  year: 2015
  ident: ref_96
  article-title: Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.02.002
  contributor:
    fullname: Luo
– volume: 27
  start-page: 191
  year: 2002
  ident: ref_27
  article-title: Rate coefficients of free-radical polymerization deduced from pulsed laser experiments
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(01)00049-1
  contributor:
    fullname: Beuermann
– volume: 3
  start-page: 325
  year: 2012
  ident: ref_29
  article-title: Ring opening metathesispolymerisation of emulsion templated dicyclopentadiene giving open porous materials with excellent mechanical properties
  publication-title: Polym. Chem.
  doi: 10.1039/C2PY00518B
  contributor:
    fullname: Krajnc
– volume: 77
  start-page: 172
  year: 2012
  ident: ref_41
  article-title: Surface Modification of High Internal Phase Emulsion Foam as a Scaffold for Tissue Engineering Application via Atmospheric Pressure Plasma Treatment
  publication-title: Adv. Sci. Technol.
  doi: 10.4028/www.scientific.net/AST.77.172
  contributor:
    fullname: Pakeyangkoon
– volume: 7
  start-page: 055005
  year: 2012
  ident: ref_110
  article-title: A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/7/5/055005
  contributor:
    fullname: Massimi
– volume: 112
  start-page: 3959
  year: 2012
  ident: ref_10
  article-title: Design and Preparation of Porous Polymers
  publication-title: Chem. Rev.
  doi: 10.1021/cr200440z
  contributor:
    fullname: Wu
– volume: 175
  start-page: 243
  year: 2019
  ident: ref_91
  article-title: Emulsion templated scaffolds manufactured from photocurable polycaprolactone
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.05.023
  contributor:
    fullname: Dikici
– volume: 213
  start-page: 123327
  year: 2021
  ident: ref_28
  article-title: RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.123327
  contributor:
    fullname: Benaddi
– volume: 36
  start-page: 364
  year: 2015
  ident: ref_112
  article-title: Injectable, Interconnected, High-Porosity Macroporous Biocompatible Gelatin Scaffolds Made by Surfactant-Free Emulsion Templating
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201400524
  contributor:
    fullname: Oh
– volume: 54
  start-page: 159
  year: 2016
  ident: ref_61
  article-title: Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.09.019
  contributor:
    fullname: Owen
– volume: 25
  start-page: 61
  year: 2010
  ident: ref_6
  article-title: Mechanism of cellular rejection in transplantation
  publication-title: Pediatr. Nephrol.
  doi: 10.1007/s00467-008-1020-x
  contributor:
    fullname: Ingulli
– volume: 51
  start-page: 871
  year: 2002
  ident: ref_52
  article-title: Tissue engineering matrixes by emulsion templating
  publication-title: Polym. Int.
  doi: 10.1002/pi.934
  contributor:
    fullname: Busby
– volume: 22
  start-page: 403
  year: 2016
  ident: ref_63
  article-title: Osteoinductive PolyHIPE Foams as Injectable Bone Grafts
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2015.0370
  contributor:
    fullname: Robinson
– volume: 225
  start-page: 119533
  year: 2019
  ident: ref_78
  article-title: Ex vivo culture of adult CD34+ stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119533
  contributor:
    fullname: Severn
– volume: 7
  start-page: 2643
  year: 2020
  ident: ref_98
  article-title: Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison with Established in vitro Assays
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00451
  contributor:
    fullname: Dikici
– volume: 101
  start-page: 1876
  year: 2013
  ident: ref_90
  article-title: Electrospun biodegradable calcium containing poly(ester-urethane)urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.34490
  contributor:
    fullname: Nair
– volume: 314
  start-page: 483
  year: 2004
  ident: ref_50
  article-title: Enhanced neurite outgrowth by human neurons grown on solid three-dimensional scaffolds
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.12.135
  contributor:
    fullname: Hayman
SSID ssj0000456617
Score 2.4692013
SecondaryResourceType review_article
Snippet High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 1786
SubjectTerms Architecture
Biocompatibility
biodegradable polymers
Biomedical materials
cell culturing
Cell growth
Cytotoxicity
Emulsion polymerization
emulsion templating
Life expectancy
Mechanical properties
Morphology
Physiology
polyHIPE
Polymers
Pore size
Porous media
porous polymers
Review
Scaffolds
Surfactants
Tissue engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA7Fjd0UHxWvVUmhdDeYZPKYLFUUESoXakHoYsgTC9cZufe66L_3nJm5MrNy43YSSHLOJPm-5OQ7hPyQOQG9KVPhM2MF8K9QeK5CoW2yzhnuY5eH7Nedvvkjbx_UwyjVF8aE9fLAveHOnDcuANkG6OxktNprK7VglU_Ga8NCt_pyNSJT3RoMuAD25l5UswRef_bcLv4_obYMN_huerQJdVr9E4A5DY8c7TfXO-TLABTped_BXfIpNXtk-3KTn22f_J23S6DtdI5NAoij-FKEYtwGHY75FnT-CJsUvXp6WeCh2Iq6Ff0dXM7tIkL9dkn7VJToKHo-usr-Su6vr-4vb4ohVUIRpKrWhQ3SmmBcsjImLnllIkzdaMucfUINr8BVlZmOSQE-yzEKC1YrrY5CCZbLA7LVtE06JJQ5UTnty-SVwBBQxysLC0H0SYSy9GpGfm5MVz_3ghg1EAm0cT2x8YxcoGHfKqGOdfcBvFsP3q3f8-6MHG_cUg-Ta1ULVNMF4segje9vxWB9vOtwTQLbYx0tgZoxPiNm4s5Jh6Ylzb_HTmAbUFIFoz76iBF8I58FhsEwVYjqmGytly_pBHDM2p92v-wrsgzy-A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qfVAE0aoYrbKC-BZud5PsZp_kLD0PQTmwQsGHsF-xhWty3l0f-t93JpeclxdfswtJZnbne34D8DGvI7o3WUxdzXmK_pdPnSh8qkw01mrhQjeH7PsPNf-Vf7ssLo9gPvTCUFnlIBM7QR1aTzHyiSQIVbT2uZpYR1EAv518Xv1NaX4U5Vn7YRoP4KEgTDzqGZ993UdbyHBBXb0D2czQz5-s2uXdDWHNCE191AdKqcPuHxmc43LJA_0zewZPe8ORTXecfg5HsTmBJ9ODPMAJPDobxre9gN-Ldo1ePVvQF6CNx6iRhFFZB-ujgEu2uEIdxs5vbpcUM9swu2E_va3rdhlwf7tmu0mVxEc2Pch0v4SL2fnF2TztJymkPi_KbWp8brTXNpo8RJGLUge82cFkde0iQXx5UZQ1VyEWaL7VIUiDjmFmVJCF5HX2Co6btomvgXErS6tcFl0hqULUitKgnAguSp9lrkjg00DJarXDy6jQzyCSVyOSJ_CF6LzfRDDX3YN2_afqb01lnbaeo7wW2ubBKKdMriQvXdROae4TOB24VPV3b1P9OykJfNgvI_UpFWKbiLSnPSpHz42LBPSIu6MPGq8011cd_jYaUSX-9Zv_v_wtPJZU_8KLVJancLxd38Z3aMBs3fvubN4D4pHzjw
  priority: 102
  providerName: ProQuest
Title Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications
URI https://www.proquest.com/docview/2539961906/abstract/
https://search.proquest.com/docview/2536466601
https://pubmed.ncbi.nlm.nih.gov/PMC8198890
https://doaj.org/article/ab7ac076217a4d96b6946208be7b670c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbidGiXok_UbWqwQNFNMR_ia0wMO0GBBEKbAgY6CHypCSBLhu0M_fc9ynJgrV00iJRI3JG8-8jjdwh9zasI8IbHzFWEZIC_fOao8Jk00VirqAtdHrKbW3n9K_--FMsTJA53Ybqgfe8ezpt6dd483HexleuVnx7ixKbFzQysmNaGTEdopDg_gujd8gsuAZjlPZ8mB0g_Xbf131WilaFKp5RFPIEYqfnAFHWM_QM3cxgkeWR1Fq_Qy95dxBf7br1GJ7F5g57PDlna3qLfRbsB8I6L1Dq4cjjdF8EpegP3m301Lu7BVOH56rFOW2NbbLf4p7dV1dYB6rcbvE9ImdSFL44OtN-hu8X8bnad9QkTMp8LvcuMz43yykaTh0hzqlWACRwMryoXE5OXp0JXRIYowEurQmAG8B83MjDBSMXfo9OmbeIHhIll2krHoxMsBYJaCvKGX7nIPOdOjNG3g-jK9Z4WowQ4kcRdDsQ9RpdJsE-VEpt196Ld_Cl7nZbWKesJLMtU2TwY6aTJJSPaReWkIn6Mzg5qKfspti1Z4tQF-EegjS9PxSD9dOJhmwiyT3VkDgCN0DFSA3UOOjQsgVHX0Wz3o-zjf3_5Cb1gKQKGiIzpM3S62zzGz-DC7NwEjfTiaoKeXc5vix-TbiMAnldLOukG8z-6rfgz
link.rule.ids 230,315,733,786,790,870,891,2115,12792,21416,27957,27958,33408,33409,33779,33780,43635,43840,53827,53829,74392,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BeBhCQjBABAYYCfEWzXEcO35CZVopsE2VKNIkHiL_CkPqktJ2D_z33KVpaV54jS0lubPvvjufvwN4J-uI4U0eU1dznmL85VOXFT5VJhprdeZC14fs4lJNvssvV8VVn3Bb9WWVW5vYGerQesqRnwiiUEW0z9WHxe-UukbR6WrfQuMu3JM5uk66KT7-tMuxEFxBD72h1swxuj9ZtPM_N8Qwk2m6Pb3nijrG_gHMHBZJ7nmd8SN42MNFNtro9zHcic0RPBjtZf-P4PB027TtCfyYtkuM5dmUvgCRHaPrI4yKOVif-5uz6TV6LnZ2czunTNmK2RX75m1dt_OA89sl2_SnJO2x0d759lOYjc9mp5O075-QelmU69R4abTXNhoZYiazUgfcz8Hkde0iEXv5rChrrkIsELTVIQiD4WBuVBCF4HX-DA6atonPgXErSqtcHl0hqC7UZqVB6xBcFD7PXZHA-60kq8WGJaPC6IJEXg1EnsBHkvNuEpFbdw_a5c-q3yuVddp6jlY601YGo5wyUgleuqid0twncLzVUtXvuFX1b30k8HY3jNKnAxDbRJQ9zVES4zWeJaAH2h180HCk-XXdsW4jdCrxr1_8_-Vv4HAyuzivzj9ffn0J9wVVwPAiFeUxHKyXt_EVQpi1e92t07_eTvK9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkwAhIRhMBAYYCfEW1XH8ET-hbrQaX1UEQ5rEQ-RPhtQlpe0e-O85p25pXniNLSW5O9_97sN3CL1hwYN7U_rcBEJy8L9sbgpuc6G80loWxvVzyL7MxPl39vGSX6b6p1Uqq9zqxF5Ru87GGPmIxhaqgPaJGIVUFlG_n75b_M7jBKmYaU3jNG6jQ8kEBwk_PJ3M6q-7iEsEL2CvN402S_D1R4tu_uc69pspZLxLvWeY-v79A9A5LJncs0HTh-hBAo94vOH2I3TLt0fo_ngvF3CE7p5tR7g9Rj_qbgmePa7jFwDOw_EyCY6lHThFAue4vgI7hifXN_MYN1thvcLfrA6hmzvY3y3xZlpl5CUe72W7n6CL6eTi7DxP0xRyy3i1zpVlSlqpvWLOF6yopIPT7VQZgvGxzZcteBWIcJ4DhAvOUQXOYamEo5ySUB6jg7Zr_VOEiaaVFqb0htNYJaqLSoGucMZTW5aGZ-jtlpLNYtMzowFfI5K8GZA8Q6eRzrtNsdV1_6Bb_mzSyWm0kdoS0NmF1MwpYYRigpLKeGmEJDZDJ1suNen8rZp_0pKh17tloH5Mh-jWA-3jHsHAeyNFhuSAu4MPGq60v676HtwApCr462f_f_krdAeEtPn8YfbpObpHYzkM4TmtTtDBennjXwCeWZuXSVD_Ajfk-GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Polymers+from+High+Internal+Phase+Emulsions+as+Scaffolds+for+Biological+Applications&rft.jtitle=Polymers&rft.au=Stanko+Kramer&rft.au=Neil+R.+Cameron&rft.au=Peter+Krajnc&rft.date=2021-05-28&rft.pub=MDPI+AG&rft.eissn=2073-4360&rft.volume=13&rft.issue=11&rft.spage=1786&rft_id=info:doi/10.3390%2Fpolym13111786&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab7ac076217a4d96b6946208be7b670c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon