Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis

Perforin (pfp) and interferon-γ (IFN-γ) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 97; no. 1; pp. 192 - 197
Main Authors Street, Shayna E.A., Cretney, Erika, Smyth, Mark J.
Format Journal Article
LanguageEnglish
Published Washington, DC Elsevier Inc 01.01.2001
The Americain Society of Hematology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perforin (pfp) and interferon-γ (IFN-γ) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-γ were significantly less proficient than pfp- or IFN-γ–deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-γ–deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-γ appeared to play an early role in protection from metastasis. Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1+ T cells. Herein, both pfp and IFN-γ played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells. Further analysis demonstrated that IFN-γ, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-γ and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V97.1.192