Molecular mechanisms for the gas-phase conversion of intermediates during cellulose gasification under nitrogen and oxygen/nitrogen

Gas-phase conversions of volatile intermediates from cellulose (AvicelPH-101) were studied using a two-stage experimental setup and compared with those of levoglucosan (1,6-anhydro-b-D-glucopyranose). Under N2or 7% O2/N2flow, vapors produced from the pyrolysis zone (500?C) degraded in the secondary...

Full description

Saved in:
Bibliographic Details
Published inChemical Industry and Chemical Engineering Quarterly Vol. 22; no. 4; pp. 343 - 353
Main Authors Fukutome, Asuka, Kawamoto, Haruo, Saka, Shiro
Format Journal Article
LanguageEnglish
Published Association of the Chemical Engineers of Serbia 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gas-phase conversions of volatile intermediates from cellulose (AvicelPH-101) were studied using a two-stage experimental setup and compared with those of levoglucosan (1,6-anhydro-b-D-glucopyranose). Under N2or 7% O2/N2flow, vapors produced from the pyrolysis zone (500?C) degraded in the secondary reaction zone at 400,500, 600 or 900?C (residence time:0.8-1.4 s). The 69.3% (C-based) of levoglucosan was obtained at 400?C under N2flow along with 1,6-anhydro-b-D-glucofuranose (8.3 %, C-based), indicating that these anhydrosugars are the major volatile intermediates from cellulose pyrolysis. Levoglucosan and other volatiles started to fragment at 600?C, and cellulose was completely gasified at 900?C. Most gas/tar formations are explained by gas-phase reactions of levoglucosan reported previously, except for some minor reactions originating from the molten-phase pyrolysis, which produced benzene, furans and 1,6-anhydro-b-D-glucofuranose. Synergetic effects of O2and volatiles accelerated fragmentation and cellulose gasification was completed at 600?C, which reduced benzene and hydrocarbon gas productions. The molecular mechanisms including the action of O2as a biradical are discussed. These lines of information provide insights into the development of tar-free clean gasification that maintains high efficiency. nema
ISSN:1451-9372
2217-7434
DOI:10.2298/CICEQ160325018F