The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels

Tensile testing has been performed at 25 and at ∼400 °C on two ferritic/martensitic steels (JFMS and HT-9) after irradiation in FFTF to up to ∼70 dpa at 373–433 °C. As observed in previous studies, this range of irradiation temperatures has a significant effect on hardening. The percent increase in...

Full description

Saved in:
Bibliographic Details
Published inJournal of nuclear materials Vol. 356; no. 1; pp. 62 - 69
Main Authors Maloy, Stuart A., Toloczko, M.B., McClellan, K.J., Romero, T., Kohno, Y., Garner, F.A., Kurtz, R.J., Kimura, A.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tensile testing has been performed at 25 and at ∼400 °C on two ferritic/martensitic steels (JFMS and HT-9) after irradiation in FFTF to up to ∼70 dpa at 373–433 °C. As observed in previous studies, this range of irradiation temperatures has a significant effect on hardening. The percent increase in yield stress decreases with increasing irradiation temperature from 373 to 433 °C. The JFMS alloy, which has 0.7 wt% silicon, exhibits approximately a factor of two increase in yield strength between tests at 427 and at 373 °C, and shows an increase in hardening with increasing dose. A comparison of the JFMS tensile properties to the properties of other ferritic/martensitic steels suggests that this hardening is due to precipitation of a Si-rich laves phase in this alloy. The HT-9 alloy, which contains more chromium and more carbon but less silicon (0.2 wt%), less molybdenum and less nickel, hardens during irradiation at 373 °C, but shows less hardening for irradiations performed at 427 °C and no increase in yield stress with increasing dose beyond 10 dpa.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2006.05.024