Combining Experience Sampling and Mobile Sensing for Digital Phenotyping With m-Path Sense: Performance Study

The experience sampling methodology (ESM) has long been considered as the gold standard for gathering data in everyday life. In contrast, current smartphone technology enables us to acquire data that are much richer, more continuous, and unobtrusive than is possible via ESM. Although data obtained f...

Full description

Saved in:
Bibliographic Details
Published inJMIR formative research Vol. 7; p. e43296
Main Authors Niemeijer, Koen, Mestdagh, Merijn, Verdonck, Stijn, Meers, Kristof, Kuppens, Peter
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 07.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The experience sampling methodology (ESM) has long been considered as the gold standard for gathering data in everyday life. In contrast, current smartphone technology enables us to acquire data that are much richer, more continuous, and unobtrusive than is possible via ESM. Although data obtained from smartphones, known as mobile sensing, can provide useful information, its stand-alone usefulness is limited when not combined with other sources of information such as data from ESM studies. Currently, there are few mobile apps available that allow researchers to combine the simultaneous collection of ESM and mobile sensing data. Furthermore, such apps focus mostly on passive data collection with only limited functionality for ESM data collection. In this paper, we presented and evaluated the performance of m-Path Sense, a novel, full-fledged, and secure ESM platform with background mobile sensing capabilities. To create an app with both ESM and mobile sensing capabilities, we combined m-Path, a versatile and user-friendly platform for ESM, with the Copenhagen Research Platform Mobile Sensing framework, a reactive cross-platform framework for digital phenotyping. We also developed an R package, named mpathsenser, which extracts raw data to an SQLite database and allows the user to link and inspect data from both sources. We conducted a 3-week pilot study in which we delivered ESM questionnaires while collecting mobile sensing data to evaluate the app's sampling reliability and perceived user experience. As m-Path is already widely used, the ease of use of the ESM system was not investigated. Data from m-Path Sense were submitted by 104 participants, totaling 69.51 GB (430.43 GB after decompression) or approximately 37.50 files or 31.10 MB per participant per day. After binning accelerometer and gyroscope data to 1 value per second using summary statistics, the entire SQLite database contained 84,299,462 observations and was 18.30 GB in size. The reliability of sampling frequency in the pilot study was satisfactory for most sensors, based on the absolute number of collected observations. However, the relative coverage rate-the ratio between the actual and expected number of measurements-was below its target value. This could mostly be ascribed to gaps in the data caused by the operating system pushing away apps running in the background, which is a well-known issue in mobile sensing. Finally, some participants reported mild battery drain, which was not considered problematic for the assessed participants' perceived user experience. To better study behavior in everyday life, we developed m-Path Sense, a fusion of both m-Path for ESM and Copenhagen Research Platform Mobile Sensing. Although reliable passive data collection with mobile phones remains challenging, it is a promising approach toward digital phenotyping when combined with ESM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2561-326X
2561-326X
DOI:10.2196/43296