Thermal-hydraulic and thermo-mechanical simulations of Water-Heavy Liquid Metal interactions towards the DEMO WCLL breeding blanket design

The Water-Cooled Lithium Lead breeding blanket concept foresees the eutectic lithium-lead (Pb-15.7Li) alloy being cooled by pressurized sub-cooled water (temperature 295–328 °C; pressure 15.5 MPa) flowing in double wall tubes. Therefore, the interaction between the Pb-15.7Li and water (e.g. tube rup...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 146; pp. 2712 - 2716
Main Authors Di Maio, P.A., Arena, P., D’Aleo, F., Del Nevo, A., Eboli, M., Forte, R., Pesetti, A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Water-Cooled Lithium Lead breeding blanket concept foresees the eutectic lithium-lead (Pb-15.7Li) alloy being cooled by pressurized sub-cooled water (temperature 295–328 °C; pressure 15.5 MPa) flowing in double wall tubes. Therefore, the interaction between the Pb-15.7Li and water (e.g. tube rupture) represents one of the main safety concerns for the design and safety analysis. Available LIFUS5/Mod2 experimental data are employed to assess the performances of thermal-hydraulic and thermo-mechanic codes. Thermal-hydraulic simulations, by SIMMER-III code, are focused on the prediction of the thermodynamic interaction among the fluids. ABAQUS Finite Element code, used for the design activities, is adotped to perform the thermo-mechanic simulations, calculating the stress and strain fields of LIFUS5/Mod2 main vessel during the experiments. Code results are compared with the experimental data and the outcomes from the analyses are discussed, in order to derive conclusions on the code assessment.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2019.04.093