Dynamic Hysteresis Model and Control Methodology for Force Output Using Piezoelectric Actuator Driving

In the application of piezoelectric jet dispensing, piezoelectric ceramics and flexure hinges cooperate to form a piezoelectric actuator. The dispensing quality of the piezoelectric jet is closely associated with the output force of the piezoelectric actuator. In this study, a corresponding piezoele...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 205136 - 205147
Main Authors Chen, Jian, Peng, Guoxiang, Hu, Hong, Ning, Jia
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the application of piezoelectric jet dispensing, piezoelectric ceramics and flexure hinges cooperate to form a piezoelectric actuator. The dispensing quality of the piezoelectric jet is closely associated with the output force of the piezoelectric actuator. In this study, a corresponding piezoelectric actuator output force experiment platform is built, and the voltage-force hysteresis curve of the piezoelectric actuator is analyzed. The voltage-force hysteresis curve exhibits memory characteristics and rate dependence. A modeling method for the dynamic hysteresis output force model is proposed, and the numerical method of the model is presented. The corresponding output force model of the piezoelectric actuator is established based on experimental data to predict the output force under different input voltages. According to the dynamic hysteresis model, the feedforward control methodology of the dynamic hysteresis inverse model is proposed, and experimental tests are performed. Experimental results show that the proposed model can express the complex nonlinear characteristics of piezoelectric actuators, and the output force feedforward control method based on the dynamic hysteresis inverse model effectively decreases the nonlinear characteristics of the piezoelectric actuator.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3037216