Homology requirements for double-strand break-mediated recombination in a phage lambda-td intron model system

Many group I introns encode endonucleases that promote intron homing by initiating a double-strand break-mediated homologous recombination event. A td intron-phage lambda model system was developed to analyze exon homology effects on intron homing and determine the role of the lambda 5'-3'...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 143; no. 3; pp. 1057 - 1068
Main Authors Parker, M M, Court, D A, Preiter, K, Belfort, M
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.07.1996
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many group I introns encode endonucleases that promote intron homing by initiating a double-strand break-mediated homologous recombination event. A td intron-phage lambda model system was developed to analyze exon homology effects on intron homing and determine the role of the lambda 5'-3' exonuclease complex (Red alpha beta) in the repair event. Efficient intron homing depended on exon lengths in the 35- to 50-bp range, although homing levels remained significantly elevated above nonbreak-mediated recombination with as little as 10 bp of flanking homology. Although precise intron insertion was demonstrated with extremely limiting exon homology, the complete absence of one exon produced illegitimate events on the side of heterology. Interestingly, intron inheritance was unaffected by the presence of extensive heterology at the double-strand break in wild-type lambda, provided that sufficient homology between donor and recipient was present distal to the heterologous sequences. However, these events involving heterologous ends were absolutely dependent on an intact Red exonuclease system. Together these results indicate that heterologous sequences can participate in double-strand break-mediated repair and imply that intron transposition to heteroallelic sites might occur at break sites within regions of limited or no homology.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/143.3.1057