Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters
Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing dema...
Saved in:
Published in | Cortex Vol. 54; no. May; pp. 179 - 189 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0010-9452 1973-8102 |
DOI: | 10.1016/j.cortex.2014.02.014 |