Effects of Fucoidan Powder Combined with Mineral Trioxide Aggregate as a Direct Pulp-Capping Material
The development of direct pulp-capping materials with favorable biological and structural properties is an important goal in restorative dentistry. Fucoidan is a sulfated, fucose-containing polysaccharide obtained from brown seaweed, with a wide range of applications; however, its use as a direct pu...
Saved in:
Published in | Polymers Vol. 14; no. 12; p. 2315 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
08.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The development of direct pulp-capping materials with favorable biological and structural properties is an important goal in restorative dentistry. Fucoidan is a sulfated, fucose-containing polysaccharide obtained from brown seaweed, with a wide range of applications; however, its use as a direct pulp-capping material has not been examined. This study aimed to evaluate the mechanical, physical, and biological effects of fucoidan combined with conventional mineral trioxide aggregate (MTA) for direct pulp capping. The capping materials were created using Portland cement (80 wt%) and zirconium oxide (20 wt%) as base components, compared with base components plus 5 wt% fucoidan (PZF5) and base components plus 10 wt% fucoidan (PZF10). The initial and final setting time, compressive strength, chemical components, cell viability, adhesion, migration, osteogenesis, and gene expression were analyzed. Fucoidan significantly reduced the initial and final setting time, regardless of quantity. However, the compressive strength was lower for PZF5. Sulfur levels increased with fucoidan. The biological activity improved, especially in the PZF5 group. Cell migration, Alizarin Red S staining, and alkaline phosphatase activity were upregulated in the PZF5 group. Fucoidan is a useful regenerative additive for conventional pulp-capping materials because it reduces the setting time and improves cell migration and osteogenic ability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym14122315 |