DNA cytosine methyltransferase enhances viability during prolonged stationary phase in Escherichia coli
ABSTRACT In Escherichia coli, DNA cytosine methyltransferase (Dcm) methylates the second cytosine in the sequence 5′CCWGG3′ generating 5-methylcytosine. Dcm is not associated with a cognate restriction enzyme, suggesting Dcm impacts facets of bacterial physiology outside of restriction-modification...
Saved in:
Published in | FEMS microbiology letters Vol. 367; no. 20; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
05.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ABSTRACT
In Escherichia coli, DNA cytosine methyltransferase (Dcm) methylates the second cytosine in the sequence 5′CCWGG3′ generating 5-methylcytosine. Dcm is not associated with a cognate restriction enzyme, suggesting Dcm impacts facets of bacterial physiology outside of restriction-modification systems. Other than gene expression changes, there are few phenotypes that have been identified in strains with natural or engineered Dcm loss, and thus Dcm function has remained an enigma. Herein, we demonstrate that Dcm does not impact bacterial growth under optimal and selected stress conditions. However, Dcm does impact viability in long-term stationary phase competition experiments. Dcm+ cells outcompete cells lacking dcm under different conditions. Dcm knockout cells have more RpoS-dependent HPII catalase activity than wild-type cells. Thus, the impact of Dcm on stationary phase may involve changes in RpoS activity. Overall, our data reveal a new role for Dcm during long-term stationary phase.
Dcm promotes viability during long-term stationary phase and represses RpoS activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1574-6968 0378-1097 1574-6968 |
DOI: | 10.1093/femsle/fnaa166 |