Immunomodulation and Mobilization of Progenitor Cells by Extracellular Matrix Bioscaffolds for Volumetric Muscle Loss Treatment

Acellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood. Thirty-two C57bl/6 mice w...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part A Vol. 22; no. 19-20; pp. 1129 - 1139
Main Authors Dziki, Jenna L., Sicari, Brian M., Wolf, Matthew T., Cramer, Madeline C., Badylak, Stephen F.
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acellular bioscaffolds composed of extracellular matrix (ECM) have been effectively used to promote functional tissue remodeling in both preclinical and clinical studies of volumetric muscle loss, but the mechanisms that contribute to such outcomes are not fully understood. Thirty-two C57bl/6 mice were divided into eight groups of four animals each. A critical-sized defect was created in the quadriceps muscle and was repaired with a small intestinal submucosa ECM bioscaffold or left untreated. Animals were sacrificed at 3, 7, 14, or 56 days after surgery. The spatiotemporal cellular response in both treated and untreated groups was characterized by immunolabeling methods. Early time points showed a robust M2-like macrophage phenotype following ECM treatment in contrast to the predominant M1-like macrophage phenotype present in the untreated group. ECM implantation promoted perivascular stem cell mobilization, increased presence of neurogenic progenitor cells, and was associated with myotube formation. These cell types were present not only at the periphery of the defect near uninjured muscle, but also in the center of the ECM-filled defect. ECM bioscaffolds modify the default response to skeletal muscle injury, and provide a microenvironment conducive to a constructive healing response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1937-3341
1937-335X
DOI:10.1089/ten.tea.2016.0340